| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmate.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
decpmate.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
decpmate.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
2 3
|
decpmatval |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
| 5 |
4
|
3adant1 |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
| 7 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( 𝑖 𝑀 𝑗 ) = ( 𝐼 𝑀 𝐽 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) = ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ) |
| 9 |
8
|
fveq1d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) ∧ ( 𝑖 = 𝐼 ∧ 𝑗 = 𝐽 ) ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ) |
| 11 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝐼 ∈ 𝑁 ) |
| 12 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → 𝐽 ∈ 𝑁 ) |
| 13 |
|
fvexd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ∈ V ) |
| 14 |
6 10 11 12 13
|
ovmpod |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) ) → ( 𝐼 ( 𝑀 decompPMat 𝐾 ) 𝐽 ) = ( ( coe1 ‘ ( 𝐼 𝑀 𝐽 ) ) ‘ 𝐾 ) ) |