Step |
Hyp |
Ref |
Expression |
1 |
|
decpmate.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
decpmate.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
decpmate.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
decpmatcl.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
5 |
|
decpmatfsupp.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
6 |
5
|
fvexi |
⊢ 0 ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 0 ∈ V ) |
8 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ V ) |
9 |
|
oveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝑥 ) ) |
10 |
1 2 3 4 5
|
decpmataa0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝑀 decompPMat 𝑥 ) = 0 ) ) |
11 |
7 8 9 10
|
mptnn0fsuppd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp 0 ) |