Metamath Proof Explorer


Theorem decpmatfsupp

Description: The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmate.p 𝑃 = ( Poly1𝑅 )
decpmate.c 𝐶 = ( 𝑁 Mat 𝑃 )
decpmate.b 𝐵 = ( Base ‘ 𝐶 )
decpmatcl.a 𝐴 = ( 𝑁 Mat 𝑅 )
decpmatfsupp.0 0 = ( 0g𝐴 )
Assertion decpmatfsupp ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp 0 )

Proof

Step Hyp Ref Expression
1 decpmate.p 𝑃 = ( Poly1𝑅 )
2 decpmate.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 decpmate.b 𝐵 = ( Base ‘ 𝐶 )
4 decpmatcl.a 𝐴 = ( 𝑁 Mat 𝑅 )
5 decpmatfsupp.0 0 = ( 0g𝐴 )
6 5 fvexi 0 ∈ V
7 6 a1i ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 0 ∈ V )
8 ovexd ( ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ V )
9 oveq2 ( 𝑘 = 𝑥 → ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝑥 ) )
10 1 2 3 4 5 decpmataa0 ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝑀 decompPMat 𝑥 ) = 0 ) )
11 7 8 9 10 mptnn0fsuppd ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp 0 )