| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							decpmate.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							decpmate.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							decpmate.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							decpmatcl.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							decpmatfsupp.0 | 
							⊢  0   =  ( 0g ‘ 𝐴 )  | 
						
						
							| 6 | 
							
								5
							 | 
							fvexi | 
							⊢  0   ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  V )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑀  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  𝑥 ) )  | 
						
						
							| 10 | 
							
								1 2 3 4 5
							 | 
							decpmataa0 | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝑀  decompPMat  𝑥 )  =   0  ) )  | 
						
						
							| 11 | 
							
								7 8 9 10
							 | 
							mptnn0fsuppd | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp   0  )  |