Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatid.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
decpmatid.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
decpmatid.i |
⊢ 𝐼 = ( 1r ‘ 𝐶 ) |
4 |
|
decpmatid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
5 |
|
decpmatid.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
6 |
|
decpmatid.1 |
⊢ 1 = ( 1r ‘ 𝐴 ) |
7 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 𝐶 ∈ Ring ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
10 |
9 3
|
ringidcl |
⊢ ( 𝐶 ∈ Ring → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 𝐼 ∈ ( Base ‘ 𝐶 ) ) |
12 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
13 |
2 9
|
decpmatval |
⊢ ( ( 𝐼 ∈ ( Base ‘ 𝐶 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) ) ) |
14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
16 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
17 |
|
simp11 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
18 |
|
simp12 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
19 |
|
simp2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
20 |
|
simp3 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
21 |
1 2 15 16 17 18 19 20 3
|
pmat1ovd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝐼 𝑗 ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) = ( coe1 ‘ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ) |
23 |
22
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) ) |
24 |
|
fvif |
⊢ ( coe1 ‘ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) = if ( 𝑖 = 𝑗 , ( coe1 ‘ ( 1r ‘ 𝑃 ) ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) |
25 |
24
|
fveq1i |
⊢ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) = ( if ( 𝑖 = 𝑗 , ( coe1 ‘ ( 1r ‘ 𝑃 ) ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) |
26 |
|
iffv |
⊢ ( if ( 𝑖 = 𝑗 , ( coe1 ‘ ( 1r ‘ 𝑃 ) ) , ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) = if ( 𝑖 = 𝑗 , ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) |
27 |
25 26
|
eqtri |
⊢ ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) = if ( 𝑖 = 𝑗 , ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) |
28 |
|
eqid |
⊢ ( var1 ‘ 𝑅 ) = ( var1 ‘ 𝑅 ) |
29 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
30 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
31 |
1 28 29 30
|
ply1idvr1 |
⊢ ( 𝑅 ∈ Ring → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
33 |
32
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 1r ‘ 𝑃 ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( coe1 ‘ ( 1r ‘ 𝑃 ) ) = ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
35 |
34
|
fveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ‘ 𝐾 ) ) |
36 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
37 |
36
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
38 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
39 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
40 |
1 28 29 30 39
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ ℕ0 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
41 |
38 40
|
mpan2 |
⊢ ( 𝑅 ∈ Ring → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) |
43 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
44 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
45 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
46 |
39 43 44 45
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
47 |
37 42 46
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) |
48 |
47
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) = ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ) |
50 |
49
|
fveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝐾 ) ) |
51 |
|
simp2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
52 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
53 |
52
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
55 |
54
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
56 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
57 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
58 |
56 57
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
60 |
55 59
|
eqeltrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) ) |
61 |
38
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
62 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
63 |
62 56 1 28 44 29 30
|
coe1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
64 |
51 60 61 63
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
65 |
|
eqeq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 = 0 ↔ 𝐾 = 0 ) ) |
66 |
65
|
ifbid |
⊢ ( 𝑘 = 𝐾 → if ( 𝑘 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) = if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) |
67 |
66
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 = 𝐾 ) → if ( 𝑘 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) = if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) |
68 |
|
fvex |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ V |
69 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
70 |
68 69
|
ifex |
⊢ if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ∈ V |
71 |
70
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ∈ V ) |
72 |
64 67 12 71
|
fvmptd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) ( var1 ‘ 𝑅 ) ) ) ) ‘ 𝐾 ) = if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) |
73 |
35 50 72
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) = if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) |
74 |
1 15 62
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
75 |
74
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
76 |
75
|
fveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) = ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) ) |
77 |
69
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
78 |
|
fvconst2g |
⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝐾 ∈ ℕ0 ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) = ( 0g ‘ 𝑅 ) ) |
79 |
77 12 78
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) = ( 0g ‘ 𝑅 ) ) |
80 |
76 79
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) = ( 0g ‘ 𝑅 ) ) |
81 |
73 80
|
ifeq12d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → if ( 𝑖 = 𝑗 , ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) = if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
82 |
81
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝑗 , ( ( coe1 ‘ ( 1r ‘ 𝑃 ) ) ‘ 𝐾 ) , ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) = if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
83 |
27 82
|
syl5eq |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ‘ 𝐾 ) = if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
84 |
23 83
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) = if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) |
85 |
84
|
mpoeq3dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝐼 𝑗 ) ) ‘ 𝐾 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
86 |
53
|
adantl |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
87 |
86
|
eqcomd |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
88 |
87
|
fveq2d |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ 𝑅 ) ) |
89 |
88
|
ifeq1d |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → if ( 𝑖 = 𝑗 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
90 |
89
|
mpoeq3dv |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
91 |
|
iftrue |
⊢ ( 𝐾 = 0 → if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
92 |
91
|
ifeq1d |
⊢ ( 𝐾 = 0 → if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) |
93 |
92
|
adantr |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) |
94 |
93
|
mpoeq3dv |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) ) ) |
95 |
4 57 62
|
mat1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
96 |
6 95
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 1 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
97 |
96
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → 1 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
98 |
97
|
adantl |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → 1 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
99 |
90 94 98
|
3eqtr4d |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = 1 ) |
100 |
|
iftrue |
⊢ ( 𝐾 = 0 → if ( 𝐾 = 0 , 1 , 0 ) = 1 ) |
101 |
100
|
eqcomd |
⊢ ( 𝐾 = 0 → 1 = if ( 𝐾 = 0 , 1 , 0 ) ) |
102 |
101
|
adantr |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → 1 = if ( 𝐾 = 0 , 1 , 0 ) ) |
103 |
99 102
|
eqtrd |
⊢ ( ( 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝐾 = 0 , 1 , 0 ) ) |
104 |
|
ifid |
⊢ if ( 𝑖 = 𝑗 , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) |
105 |
104
|
a1i |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → if ( 𝑖 = 𝑗 , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
106 |
105
|
mpoeq3dv |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
107 |
|
iffalse |
⊢ ( ¬ 𝐾 = 0 → if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
108 |
107
|
adantr |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
109 |
108
|
ifeq1d |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) = if ( 𝑖 = 𝑗 , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
110 |
109
|
mpoeq3dv |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 0g ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
111 |
|
3simpa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
112 |
111
|
adantl |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
113 |
4 62
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
114 |
5 113
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
115 |
112 114
|
syl |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → 0 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
116 |
106 110 115
|
3eqtr4d |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = 0 ) |
117 |
|
iffalse |
⊢ ( ¬ 𝐾 = 0 → if ( 𝐾 = 0 , 1 , 0 ) = 0 ) |
118 |
117
|
eqcomd |
⊢ ( ¬ 𝐾 = 0 → 0 = if ( 𝐾 = 0 , 1 , 0 ) ) |
119 |
118
|
adantr |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → 0 = if ( 𝐾 = 0 , 1 , 0 ) ) |
120 |
116 119
|
eqtrd |
⊢ ( ( ¬ 𝐾 = 0 ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝐾 = 0 , 1 , 0 ) ) |
121 |
103 120
|
pm2.61ian |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , if ( 𝐾 = 0 , ( 1r ‘ ( Scalar ‘ 𝑃 ) ) , ( 0g ‘ 𝑅 ) ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝐾 = 0 , 1 , 0 ) ) |
122 |
14 85 121
|
3eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 decompPMat 𝐾 ) = if ( 𝐾 = 0 , 1 , 0 ) ) |