| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmatmul.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
decpmatmul.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
decpmatmul.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
decpmatmul.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 5 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑖 → ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) = ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑦 = 𝑗 → ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) = ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) |
| 8 |
6 7
|
oveqan12d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) = ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) |
| 9 |
8
|
mpteq2dv |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) |
| 10 |
9
|
oveq2d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) = ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) |
| 11 |
10
|
mpteq2dv |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑥 = 𝑖 ∧ 𝑦 = 𝑗 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) ) |
| 14 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) |
| 15 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) |
| 16 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) ∈ V ) |
| 17 |
5 13 14 15 16
|
ovmpod |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) ) |
| 18 |
2 3
|
matrcl |
⊢ ( 𝑈 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ V ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝑈 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 21 |
20
|
anim2i |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) ) |
| 22 |
21
|
ancomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 23 |
22
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 24 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 25 |
4 24
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 29 |
28
|
eqcomd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( .r ‘ 𝐴 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 30 |
29
|
oveqd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) = ( ( 𝑈 decompPMat 𝑘 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) |
| 31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 32 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 33 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑅 ∈ Ring ) |
| 36 |
23
|
simpld |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑁 ∈ Fin ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑁 ∈ Fin ) |
| 39 |
|
simpl2l |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑈 ∈ 𝐵 ) |
| 40 |
39
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑈 ∈ 𝐵 ) |
| 41 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐾 ) → 𝑘 ∈ ℕ0 ) |
| 42 |
41
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑘 ∈ ℕ0 ) |
| 43 |
35 40 42
|
3jca |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) ) |
| 44 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 45 |
1 2 3 4 44
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 46 |
43 45
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 47 |
4 31 44
|
matbas2i |
⊢ ( ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 48 |
46 47
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 49 |
|
simpl2r |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑊 ∈ 𝐵 ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑊 ∈ 𝐵 ) |
| 51 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... 𝐾 ) → ( 𝐾 − 𝑘 ) ∈ ℕ0 ) |
| 52 |
51
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝐾 − 𝑘 ) ∈ ℕ0 ) |
| 53 |
35 50 52
|
3jca |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ ( 𝐾 − 𝑘 ) ∈ ℕ0 ) ) |
| 54 |
1 2 3 4 44
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ ( 𝐾 − 𝑘 ) ∈ ℕ0 ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 56 |
4 31 44
|
matbas2i |
⊢ ( ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 58 |
24 31 32 35 38 38 38 48 57
|
mamuval |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝑈 decompPMat 𝑘 ) ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) |
| 59 |
30 58
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) |
| 60 |
59
|
mpteq2dva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) |
| 62 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 63 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0 ... 𝐾 ) ∈ V ) |
| 64 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 65 |
33 64
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑅 ∈ CMnd ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑅 ∈ CMnd ) |
| 67 |
66
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑅 ∈ CMnd ) |
| 68 |
67
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑅 ∈ CMnd ) |
| 69 |
38
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 70 |
35
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 71 |
70
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 72 |
|
simpl2 |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → 𝑥 ∈ 𝑁 ) |
| 73 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → 𝑡 ∈ 𝑁 ) |
| 74 |
43
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) ) |
| 76 |
75 45
|
syl |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 77 |
4 31 44 72 73 76
|
matecld |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ∈ ( Base ‘ 𝑅 ) ) |
| 78 |
|
simpl3 |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → 𝑦 ∈ 𝑁 ) |
| 79 |
55
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 81 |
4 31 44 73 78 80
|
matecld |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 82 |
31 32
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 83 |
71 77 81 82
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) ∧ 𝑡 ∈ 𝑁 ) → ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 84 |
83
|
ralrimiva |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ∀ 𝑡 ∈ 𝑁 ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 85 |
31 68 69 84
|
gsummptcl |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 86 |
4 31 44 38 35 85
|
matbas2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 87 |
|
eqid |
⊢ ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) |
| 88 |
|
fzfid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0 ... 𝐾 ) ∈ Fin ) |
| 89 |
|
simpl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ V ) → 𝑁 ∈ Fin ) |
| 90 |
89 89
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ V ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 91 |
18 90
|
syl |
⊢ ( 𝑈 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 93 |
92
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 95 |
94
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) ) |
| 96 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ∈ V ) |
| 97 |
95 96
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ∈ V ) |
| 98 |
|
fvexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 0g ‘ 𝐴 ) ∈ V ) |
| 99 |
87 88 97 98
|
fsuppmptdm |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) finSupp ( 0g ‘ 𝐴 ) ) |
| 100 |
4 44 62 37 63 34 86 99
|
matgsum |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) |
| 101 |
61 100
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) ) |
| 102 |
101
|
oveqd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) 𝑗 ) = ( 𝑖 ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑥 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑦 ) ) ) ) ) ) ) 𝑗 ) ) |
| 103 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) |
| 104 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝐾 ∈ ℕ0 ) |
| 105 |
1 2 3
|
decpmatmullem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) ) ) ) |
| 106 |
37 34 103 14 15 104 105
|
syl213anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) ) ) ) |
| 107 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑅 ∈ Ring ) |
| 108 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑖 ∈ 𝑁 ) |
| 109 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑡 ∈ 𝑁 ) |
| 110 |
3
|
eleq2i |
⊢ ( 𝑈 ∈ 𝐵 ↔ 𝑈 ∈ ( Base ‘ 𝐶 ) ) |
| 111 |
110
|
biimpi |
⊢ ( 𝑈 ∈ 𝐵 → 𝑈 ∈ ( Base ‘ 𝐶 ) ) |
| 112 |
111
|
adantr |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → 𝑈 ∈ ( Base ‘ 𝐶 ) ) |
| 113 |
112
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑈 ∈ ( Base ‘ 𝐶 ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑈 ∈ ( Base ‘ 𝐶 ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑈 ∈ ( Base ‘ 𝐶 ) ) |
| 116 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 117 |
2 116
|
matecl |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑡 ∈ 𝑁 ∧ 𝑈 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑖 𝑈 𝑡 ) ∈ ( Base ‘ 𝑃 ) ) |
| 118 |
108 109 115 117
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → ( 𝑖 𝑈 𝑡 ) ∈ ( Base ‘ 𝑃 ) ) |
| 119 |
41
|
ad2antll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 120 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) = ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) |
| 121 |
120 116 1 31
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑈 𝑡 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 122 |
118 119 121
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 123 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑗 ∈ 𝑁 ) |
| 124 |
49
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → 𝑊 ∈ 𝐵 ) |
| 125 |
2 116 3 109 123 124
|
matecld |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → ( 𝑡 𝑊 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
| 126 |
51
|
ad2antll |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → ( 𝐾 − 𝑘 ) ∈ ℕ0 ) |
| 127 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) = ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) |
| 128 |
127 116 1 31
|
coe1fvalcl |
⊢ ( ( ( 𝑡 𝑊 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝐾 − 𝑘 ) ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 129 |
125 126 128
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 130 |
31 32
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 131 |
107 122 129 130
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ) → ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 132 |
31 66 37 88 131
|
gsumcom3fi |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) ) ) ) |
| 133 |
14
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑖 ∈ 𝑁 ) |
| 134 |
133
|
anim1i |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 ∧ 𝑡 ∈ 𝑁 ) ) |
| 135 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑡 ∈ 𝑁 ) ) → ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) = ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ) |
| 136 |
43 134 135
|
syl2an2r |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) = ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ) |
| 137 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑗 ∈ 𝑁 ) |
| 138 |
137
|
anim1ci |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑡 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) |
| 139 |
1 2 3
|
decpmate |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ ( 𝐾 − 𝑘 ) ∈ ℕ0 ) ∧ ( 𝑡 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) = ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) |
| 140 |
53 138 139
|
syl2an2r |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑡 ∈ 𝑁 ) → ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) = ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) |
| 141 |
136 140
|
oveq12d |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑡 ∈ 𝑁 ) → ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) = ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) |
| 142 |
141
|
eqcomd |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) ∧ 𝑡 ∈ 𝑁 ) → ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) = ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) |
| 143 |
142
|
mpteq2dva |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑡 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) = ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) |
| 144 |
143
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) |
| 145 |
144
|
mpteq2dva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) |
| 146 |
145
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( ( coe1 ‘ ( 𝑖 𝑈 𝑡 ) ) ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑡 𝑊 𝑗 ) ) ‘ ( 𝐾 − 𝑘 ) ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) ) |
| 147 |
106 132 146
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( 𝑅 Σg ( 𝑡 ∈ 𝑁 ↦ ( ( 𝑖 ( 𝑈 decompPMat 𝑘 ) 𝑡 ) ( .r ‘ 𝑅 ) ( 𝑡 ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) 𝑗 ) ) ) ) ) ) ) |
| 148 |
17 102 147
|
3eqtr4rd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑖 ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) 𝑗 ) ) |
| 149 |
148
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑖 ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) 𝑗 ) ) |
| 150 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 151 |
22 150
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐶 ∈ Ring ) |
| 152 |
|
simprl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑈 ∈ 𝐵 ) |
| 153 |
|
simprr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) |
| 154 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
| 155 |
3 154
|
ringcl |
⊢ ( ( 𝐶 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) ∈ 𝐵 ) |
| 156 |
151 152 153 155
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) ∈ 𝐵 ) |
| 157 |
156
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) ∈ 𝐵 ) |
| 158 |
1 2 3 4 44
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 159 |
157 158
|
syld3an2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ) |
| 160 |
4
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 161 |
23 160
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
| 162 |
|
ringcmn |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ CMnd ) |
| 163 |
161 162
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐴 ∈ CMnd ) |
| 164 |
|
fzfid |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 0 ... 𝐾 ) ∈ Fin ) |
| 165 |
161
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝐴 ∈ Ring ) |
| 166 |
33
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑅 ∈ Ring ) |
| 167 |
|
simpl2l |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑈 ∈ 𝐵 ) |
| 168 |
41
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑘 ∈ ℕ0 ) |
| 169 |
166 167 168
|
3jca |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ 𝑈 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) ) |
| 170 |
169 45
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
| 171 |
|
simpl2r |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → 𝑊 ∈ 𝐵 ) |
| 172 |
51
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝐾 − 𝑘 ) ∈ ℕ0 ) |
| 173 |
166 171 172
|
3jca |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑅 ∈ Ring ∧ 𝑊 ∈ 𝐵 ∧ ( 𝐾 − 𝑘 ) ∈ ℕ0 ) ) |
| 174 |
173 54
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 175 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 176 |
44 175
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑈 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 177 |
165 170 174 176
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 178 |
177
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ∀ 𝑘 ∈ ( 0 ... 𝐾 ) ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 179 |
44 163 164 178
|
gsummptcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) |
| 180 |
4 44
|
eqmat |
⊢ ( ( ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑖 ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) 𝑗 ) ) ) |
| 181 |
159 179 180
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) 𝑗 ) = ( 𝑖 ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) 𝑗 ) ) ) |
| 182 |
149 181
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑈 ( .r ‘ 𝐶 ) 𝑊 ) decompPMat 𝐾 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝐾 ) ↦ ( ( 𝑈 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑊 decompPMat ( 𝐾 − 𝑘 ) ) ) ) ) ) |