| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmatmul.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
decpmatmul.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
decpmatmul.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
decpmatmul.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 5 |
|
decpmatmulsumfsupp.m |
⊢ · = ( .r ‘ 𝐴 ) |
| 6 |
|
decpmatmulsumfsupp.0 |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 7 |
6
|
fvexi |
⊢ 0 ∈ V |
| 8 |
7
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 0 ∈ V ) |
| 9 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑙 − 𝑘 ) ) ) ) ) ∈ V ) |
| 10 |
|
oveq2 |
⊢ ( 𝑙 = 𝑛 → ( 0 ... 𝑙 ) = ( 0 ... 𝑛 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑙 = 𝑛 → ( 𝑙 − 𝑘 ) = ( 𝑛 − 𝑘 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑙 = 𝑛 → ( 𝑦 decompPMat ( 𝑙 − 𝑘 ) ) = ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑙 = 𝑛 → ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑙 − 𝑘 ) ) ) = ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) |
| 14 |
10 13
|
mpteq12dv |
⊢ ( 𝑙 = 𝑛 → ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑙 − 𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑙 = 𝑛 → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑙 − 𝑘 ) ) ) ) ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 18 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 19 |
18
|
anim1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 20 |
|
3anass |
⊢ ( ( 𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝐶 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 21 |
19 20
|
sylibr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 22 |
|
eqid |
⊢ ( .r ‘ 𝐶 ) = ( .r ‘ 𝐶 ) |
| 23 |
3 22
|
ringcl |
⊢ ( ( 𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) |
| 24 |
21 23
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 26 |
1 2 3 25
|
pmatcoe1fsupp |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 27 |
16 17 24 26
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 28 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝑖 → ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) = ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ) |
| 29 |
28
|
fveq1d |
⊢ ( 𝑎 = 𝑖 → ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) ) |
| 30 |
29
|
eqeq1d |
⊢ ( 𝑎 = 𝑖 → ( ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 31 |
|
oveq2 |
⊢ ( 𝑏 = 𝑗 → ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) = ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝑏 = 𝑗 → ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) = ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ) |
| 33 |
32
|
fveq1d |
⊢ ( 𝑏 = 𝑗 → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑏 = 𝑗 → ( ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ↔ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 35 |
30 34
|
rspc2va |
⊢ ( ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ∧ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
| 36 |
35
|
expcom |
⊢ ( ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ) |
| 38 |
37
|
3impib |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) |
| 39 |
38
|
mpoeq3dva |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 40 |
4 25
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 41 |
6 40
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 0 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 42 |
41
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → 0 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 0g ‘ 𝑅 ) ) ) |
| 43 |
39 42
|
eqtr4d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) |
| 44 |
43
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) |
| 45 |
44
|
imim2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) ) |
| 46 |
45
|
ralimdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) ) |
| 47 |
46
|
reximdv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) ) |
| 48 |
27 47
|
mpd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) |
| 49 |
5
|
oveqi |
⊢ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) = ( ( 𝑥 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) |
| 50 |
49
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) = ( ( 𝑥 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) |
| 51 |
50
|
mpteq2dv |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) ) |
| 53 |
1 2 3 4
|
decpmatmul |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) ) |
| 54 |
53
|
ad4ant234 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) ) |
| 55 |
2 3
|
decpmatval |
⊢ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 56 |
24 55
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 57 |
52 54 56
|
3eqtr2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ) |
| 58 |
57
|
eqeq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = 0 ↔ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) |
| 59 |
58
|
imbi2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = 0 ) ↔ ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) ) |
| 60 |
59
|
ralbidva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = 0 ) ↔ ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) ) |
| 61 |
60
|
rexbidv |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = 0 ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) = 0 ) ) ) |
| 62 |
48 61
|
mpbird |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑛 − 𝑘 ) ) ) ) ) = 0 ) ) |
| 63 |
8 9 15 62
|
mptnn0fsuppd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑙 ∈ ℕ0 ↦ ( 𝐴 Σg ( 𝑘 ∈ ( 0 ... 𝑙 ) ↦ ( ( 𝑥 decompPMat 𝑘 ) · ( 𝑦 decompPMat ( 𝑙 − 𝑘 ) ) ) ) ) ) finSupp 0 ) |