Metamath Proof Explorer


Theorem decpmatval

Description: The matrix consisting of the coefficients in the polynomial entries of a polynomial matrix for the same power, general version for arbitrary matrices. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
decpmatval.b 𝐵 = ( Base ‘ 𝐴 )
Assertion decpmatval ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 decpmatval.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 decpmatval.b 𝐵 = ( Base ‘ 𝐴 )
3 decpmatval0 ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 1 4 2 matbas2i ( 𝑀𝐵𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) )
6 elmapi ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) )
7 fdm ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → dom 𝑀 = ( 𝑁 × 𝑁 ) )
8 7 dmeqd ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → dom dom 𝑀 = dom ( 𝑁 × 𝑁 ) )
9 dmxpid dom ( 𝑁 × 𝑁 ) = 𝑁
10 8 9 eqtrdi ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → dom dom 𝑀 = 𝑁 )
11 5 6 10 3syl ( 𝑀𝐵 → dom dom 𝑀 = 𝑁 )
12 11 adantr ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → dom dom 𝑀 = 𝑁 )
13 eqidd ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) )
14 12 12 13 mpoeq123dv ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )
15 3 14 eqtrd ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) )