Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
decpmatval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
decpmatval0 |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
5 |
1 4 2
|
matbas2i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
6 |
|
elmapi |
⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
7 |
|
fdm |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → dom 𝑀 = ( 𝑁 × 𝑁 ) ) |
8 |
7
|
dmeqd |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → dom dom 𝑀 = dom ( 𝑁 × 𝑁 ) ) |
9 |
|
dmxpid |
⊢ dom ( 𝑁 × 𝑁 ) = 𝑁 |
10 |
8 9
|
eqtrdi |
⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) → dom dom 𝑀 = 𝑁 ) |
11 |
5 6 10
|
3syl |
⊢ ( 𝑀 ∈ 𝐵 → dom dom 𝑀 = 𝑁 ) |
12 |
11
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → dom dom 𝑀 = 𝑁 ) |
13 |
|
eqidd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) |
14 |
12 12 13
|
mpoeq123dv |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
15 |
3 14
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |