Step |
Hyp |
Ref |
Expression |
1 |
|
df-decpmat |
⊢ decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
3 |
|
dmeq |
⊢ ( 𝑚 = 𝑀 → dom 𝑚 = dom 𝑀 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → dom 𝑚 = dom 𝑀 ) |
5 |
4
|
dmeqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → dom dom 𝑚 = dom dom 𝑀 ) |
6 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
10 |
8 9
|
fveq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) |
11 |
5 5 10
|
mpoeq123dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) ) → ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
13 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
14 |
13
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ V ) |
15 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
16 |
|
dmexg |
⊢ ( 𝑀 ∈ 𝑉 → dom 𝑀 ∈ V ) |
17 |
16
|
dmexd |
⊢ ( 𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V ) |
18 |
17 17
|
jca |
⊢ ( 𝑀 ∈ 𝑉 → ( dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V ) ) |
20 |
|
mpoexga |
⊢ ( ( dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V ) → ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ∈ V ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ∈ V ) |
22 |
2 12 14 15 21
|
ovmpod |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |