| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-decpmat |
⊢ decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → decompPMat = ( 𝑚 ∈ V , 𝑘 ∈ ℕ0 ↦ ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
| 3 |
|
dmeq |
⊢ ( 𝑚 = 𝑀 → dom 𝑚 = dom 𝑀 ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → dom 𝑚 = dom 𝑀 ) |
| 5 |
4
|
dmeqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → dom dom 𝑚 = dom dom 𝑀 ) |
| 6 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
| 10 |
8 9
|
fveq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) |
| 11 |
5 5 10
|
mpoeq123dv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) → ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑚 = 𝑀 ∧ 𝑘 = 𝐾 ) ) → ( 𝑖 ∈ dom dom 𝑚 , 𝑗 ∈ dom dom 𝑚 ↦ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |
| 13 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ V ) |
| 15 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
| 16 |
|
dmexg |
⊢ ( 𝑀 ∈ 𝑉 → dom 𝑀 ∈ V ) |
| 17 |
16
|
dmexd |
⊢ ( 𝑀 ∈ 𝑉 → dom dom 𝑀 ∈ V ) |
| 18 |
17 17
|
jca |
⊢ ( 𝑀 ∈ 𝑉 → ( dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V ) ) |
| 20 |
|
mpoexga |
⊢ ( ( dom dom 𝑀 ∈ V ∧ dom dom 𝑀 ∈ V ) → ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ∈ V ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ∈ V ) |
| 22 |
2 12 14 15 21
|
ovmpod |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝐾 ) = ( 𝑖 ∈ dom dom 𝑀 , 𝑗 ∈ dom dom 𝑀 ↦ ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝐾 ) ) ) |