| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decrmanc.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decrmanc.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
decrmanc.n |
⊢ 𝑁 ∈ ℕ0 |
| 4 |
|
decrmanc.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
| 5 |
|
decrmanc.p |
⊢ 𝑃 ∈ ℕ0 |
| 6 |
|
decrmac.f |
⊢ 𝐹 ∈ ℕ0 |
| 7 |
|
decrmac.g |
⊢ 𝐺 ∈ ℕ0 |
| 8 |
|
decrmac.e |
⊢ ( ( 𝐴 · 𝑃 ) + 𝐺 ) = 𝐸 |
| 9 |
|
decrmac.2 |
⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = ; 𝐺 𝐹 |
| 10 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 11 |
3
|
dec0h |
⊢ 𝑁 = ; 0 𝑁 |
| 12 |
7
|
nn0cni |
⊢ 𝐺 ∈ ℂ |
| 13 |
12
|
addlidi |
⊢ ( 0 + 𝐺 ) = 𝐺 |
| 14 |
13
|
oveq2i |
⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐺 ) ) = ( ( 𝐴 · 𝑃 ) + 𝐺 ) |
| 15 |
14 8
|
eqtri |
⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐺 ) ) = 𝐸 |
| 16 |
1 2 10 3 4 11 5 6 7 15 9
|
decmac |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |