Step |
Hyp |
Ref |
Expression |
1 |
|
decrmanc.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
decrmanc.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
decrmanc.n |
⊢ 𝑁 ∈ ℕ0 |
4 |
|
decrmanc.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
5 |
|
decrmanc.p |
⊢ 𝑃 ∈ ℕ0 |
6 |
|
decrmac.f |
⊢ 𝐹 ∈ ℕ0 |
7 |
|
decrmac.g |
⊢ 𝐺 ∈ ℕ0 |
8 |
|
decrmac.e |
⊢ ( ( 𝐴 · 𝑃 ) + 𝐺 ) = 𝐸 |
9 |
|
decrmac.2 |
⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = ; 𝐺 𝐹 |
10 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
11 |
3
|
dec0h |
⊢ 𝑁 = ; 0 𝑁 |
12 |
7
|
nn0cni |
⊢ 𝐺 ∈ ℂ |
13 |
12
|
addid2i |
⊢ ( 0 + 𝐺 ) = 𝐺 |
14 |
13
|
oveq2i |
⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐺 ) ) = ( ( 𝐴 · 𝑃 ) + 𝐺 ) |
15 |
14 8
|
eqtri |
⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐺 ) ) = 𝐸 |
16 |
1 2 10 3 4 11 5 6 7 15 9
|
decmac |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |