Metamath Proof Explorer
		
		
		
		Description:  Perform a multiply-add of two numerals M and N against a fixed
         multiplicand P (no carry).  (Contributed by AV, 16-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | decrmanc.a | ⊢ 𝐴  ∈  ℕ0 | 
					
						|  |  | decrmanc.b | ⊢ 𝐵  ∈  ℕ0 | 
					
						|  |  | decrmanc.n | ⊢ 𝑁  ∈  ℕ0 | 
					
						|  |  | decrmanc.m | ⊢ 𝑀  =  ; 𝐴 𝐵 | 
					
						|  |  | decrmanc.p | ⊢ 𝑃  ∈  ℕ0 | 
					
						|  |  | decrmanc.e | ⊢ ( 𝐴  ·  𝑃 )  =  𝐸 | 
					
						|  |  | decrmanc.f | ⊢ ( ( 𝐵  ·  𝑃 )  +  𝑁 )  =  𝐹 | 
				
					|  | Assertion | decrmanc | ⊢  ( ( 𝑀  ·  𝑃 )  +  𝑁 )  =  ; 𝐸 𝐹 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decrmanc.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | decrmanc.b | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | decrmanc.n | ⊢ 𝑁  ∈  ℕ0 | 
						
							| 4 |  | decrmanc.m | ⊢ 𝑀  =  ; 𝐴 𝐵 | 
						
							| 5 |  | decrmanc.p | ⊢ 𝑃  ∈  ℕ0 | 
						
							| 6 |  | decrmanc.e | ⊢ ( 𝐴  ·  𝑃 )  =  𝐸 | 
						
							| 7 |  | decrmanc.f | ⊢ ( ( 𝐵  ·  𝑃 )  +  𝑁 )  =  𝐹 | 
						
							| 8 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 9 | 3 | dec0h | ⊢ 𝑁  =  ; 0 𝑁 | 
						
							| 10 | 1 5 | nn0mulcli | ⊢ ( 𝐴  ·  𝑃 )  ∈  ℕ0 | 
						
							| 11 | 10 | nn0cni | ⊢ ( 𝐴  ·  𝑃 )  ∈  ℂ | 
						
							| 12 | 11 | addridi | ⊢ ( ( 𝐴  ·  𝑃 )  +  0 )  =  ( 𝐴  ·  𝑃 ) | 
						
							| 13 | 12 6 | eqtri | ⊢ ( ( 𝐴  ·  𝑃 )  +  0 )  =  𝐸 | 
						
							| 14 | 1 2 8 3 4 9 5 13 7 | decma | ⊢ ( ( 𝑀  ·  𝑃 )  +  𝑁 )  =  ; 𝐸 𝐹 |