Metamath Proof Explorer
Description: Perform a multiply-add of two numerals M and N against a fixed
multiplicand P (no carry). (Contributed by AV, 16-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
decrmanc.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
decrmanc.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
decrmanc.n |
⊢ 𝑁 ∈ ℕ0 |
|
|
decrmanc.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
|
|
decrmanc.p |
⊢ 𝑃 ∈ ℕ0 |
|
|
decrmanc.e |
⊢ ( 𝐴 · 𝑃 ) = 𝐸 |
|
|
decrmanc.f |
⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = 𝐹 |
|
Assertion |
decrmanc |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
decrmanc.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
decrmanc.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
decrmanc.n |
⊢ 𝑁 ∈ ℕ0 |
4 |
|
decrmanc.m |
⊢ 𝑀 = ; 𝐴 𝐵 |
5 |
|
decrmanc.p |
⊢ 𝑃 ∈ ℕ0 |
6 |
|
decrmanc.e |
⊢ ( 𝐴 · 𝑃 ) = 𝐸 |
7 |
|
decrmanc.f |
⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = 𝐹 |
8 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
9 |
3
|
dec0h |
⊢ 𝑁 = ; 0 𝑁 |
10 |
1 5
|
nn0mulcli |
⊢ ( 𝐴 · 𝑃 ) ∈ ℕ0 |
11 |
10
|
nn0cni |
⊢ ( 𝐴 · 𝑃 ) ∈ ℂ |
12 |
11
|
addid1i |
⊢ ( ( 𝐴 · 𝑃 ) + 0 ) = ( 𝐴 · 𝑃 ) |
13 |
12 6
|
eqtri |
⊢ ( ( 𝐴 · 𝑃 ) + 0 ) = 𝐸 |
14 |
1 2 8 3 4 9 5 13 7
|
decma |
⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |