Metamath Proof Explorer


Theorem decsplit0b

Description: Split a decimal number into two parts. Base case: N = 0 . (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypothesis decsplit0.1 𝐴 ∈ ℕ0
Assertion decsplit0b ( ( 𝐴 · ( 1 0 ↑ 0 ) ) + 𝐵 ) = ( 𝐴 + 𝐵 )

Proof

Step Hyp Ref Expression
1 decsplit0.1 𝐴 ∈ ℕ0
2 10nn0 1 0 ∈ ℕ0
3 2 numexp0 ( 1 0 ↑ 0 ) = 1
4 3 oveq2i ( 𝐴 · ( 1 0 ↑ 0 ) ) = ( 𝐴 · 1 )
5 1 nn0cni 𝐴 ∈ ℂ
6 5 mulid1i ( 𝐴 · 1 ) = 𝐴
7 4 6 eqtri ( 𝐴 · ( 1 0 ↑ 0 ) ) = 𝐴
8 7 oveq1i ( ( 𝐴 · ( 1 0 ↑ 0 ) ) + 𝐵 ) = ( 𝐴 + 𝐵 )