Metamath Proof Explorer


Theorem decsplit1

Description: Split a decimal number into two parts. Base case: N = 1 . (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypothesis decsplit0.1 𝐴 ∈ ℕ0
Assertion decsplit1 ( ( 𝐴 · ( 1 0 ↑ 1 ) ) + 𝐵 ) = 𝐴 𝐵

Proof

Step Hyp Ref Expression
1 decsplit0.1 𝐴 ∈ ℕ0
2 10nn0 1 0 ∈ ℕ0
3 2 numexp1 ( 1 0 ↑ 1 ) = 1 0
4 3 oveq2i ( 𝐴 · ( 1 0 ↑ 1 ) ) = ( 𝐴 · 1 0 )
5 2 nn0cni 1 0 ∈ ℂ
6 1 nn0cni 𝐴 ∈ ℂ
7 5 6 mulcomi ( 1 0 · 𝐴 ) = ( 𝐴 · 1 0 )
8 4 7 eqtr4i ( 𝐴 · ( 1 0 ↑ 1 ) ) = ( 1 0 · 𝐴 )
9 8 oveq1i ( ( 𝐴 · ( 1 0 ↑ 1 ) ) + 𝐵 ) = ( ( 1 0 · 𝐴 ) + 𝐵 )
10 dfdec10 𝐴 𝐵 = ( ( 1 0 · 𝐴 ) + 𝐵 )
11 9 10 eqtr4i ( ( 𝐴 · ( 1 0 ↑ 1 ) ) + 𝐵 ) = 𝐴 𝐵