| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decaddi.1 | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | decaddi.2 | ⊢ 𝐵  ∈  ℕ0 | 
						
							| 3 |  | decaddi.3 | ⊢ 𝑁  ∈  ℕ0 | 
						
							| 4 |  | decaddi.4 | ⊢ 𝑀  =  ; 𝐴 𝐵 | 
						
							| 5 |  | decaddci.5 | ⊢ ( 𝐴  +  1 )  =  𝐷 | 
						
							| 6 |  | decsubi.5 | ⊢ ( 𝐵  −  𝑁 )  =  𝐶 | 
						
							| 7 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 8 | 7 1 | nn0mulcli | ⊢ ( ; 1 0  ·  𝐴 )  ∈  ℕ0 | 
						
							| 9 | 8 | nn0cni | ⊢ ( ; 1 0  ·  𝐴 )  ∈  ℂ | 
						
							| 10 | 2 | nn0cni | ⊢ 𝐵  ∈  ℂ | 
						
							| 11 | 3 | nn0cni | ⊢ 𝑁  ∈  ℂ | 
						
							| 12 | 9 10 11 | addsubassi | ⊢ ( ( ( ; 1 0  ·  𝐴 )  +  𝐵 )  −  𝑁 )  =  ( ( ; 1 0  ·  𝐴 )  +  ( 𝐵  −  𝑁 ) ) | 
						
							| 13 |  | dfdec10 | ⊢ ; 𝐴 𝐵  =  ( ( ; 1 0  ·  𝐴 )  +  𝐵 ) | 
						
							| 14 | 4 13 | eqtri | ⊢ 𝑀  =  ( ( ; 1 0  ·  𝐴 )  +  𝐵 ) | 
						
							| 15 | 14 | oveq1i | ⊢ ( 𝑀  −  𝑁 )  =  ( ( ( ; 1 0  ·  𝐴 )  +  𝐵 )  −  𝑁 ) | 
						
							| 16 |  | dfdec10 | ⊢ ; 𝐴 𝐶  =  ( ( ; 1 0  ·  𝐴 )  +  𝐶 ) | 
						
							| 17 | 6 | eqcomi | ⊢ 𝐶  =  ( 𝐵  −  𝑁 ) | 
						
							| 18 | 17 | oveq2i | ⊢ ( ( ; 1 0  ·  𝐴 )  +  𝐶 )  =  ( ( ; 1 0  ·  𝐴 )  +  ( 𝐵  −  𝑁 ) ) | 
						
							| 19 | 16 18 | eqtri | ⊢ ; 𝐴 𝐶  =  ( ( ; 1 0  ·  𝐴 )  +  ( 𝐵  −  𝑁 ) ) | 
						
							| 20 | 12 15 19 | 3eqtr4i | ⊢ ( 𝑀  −  𝑁 )  =  ; 𝐴 𝐶 |