Metamath Proof Explorer
Description: The successor of a decimal integer (no carry). (Contributed by Mario
Carneiro, 17-Apr-2015) (Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
declt.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
declt.b |
⊢ 𝐵 ∈ ℕ0 |
|
|
decsuc.c |
⊢ ( 𝐵 + 1 ) = 𝐶 |
|
|
decsuc.n |
⊢ 𝑁 = ; 𝐴 𝐵 |
|
Assertion |
decsuc |
⊢ ( 𝑁 + 1 ) = ; 𝐴 𝐶 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
declt.a |
⊢ 𝐴 ∈ ℕ0 |
2 |
|
declt.b |
⊢ 𝐵 ∈ ℕ0 |
3 |
|
decsuc.c |
⊢ ( 𝐵 + 1 ) = 𝐶 |
4 |
|
decsuc.n |
⊢ 𝑁 = ; 𝐴 𝐵 |
5 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
6 |
|
dfdec10 |
⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
7 |
4 6
|
eqtri |
⊢ 𝑁 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
8 |
5 1 2 3 7
|
numsuc |
⊢ ( 𝑁 + 1 ) = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
9 |
|
dfdec10 |
⊢ ; 𝐴 𝐶 = ( ( ; 1 0 · 𝐴 ) + 𝐶 ) |
10 |
8 9
|
eqtr4i |
⊢ ( 𝑁 + 1 ) = ; 𝐴 𝐶 |