| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) |
| 3 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 |
| 4 |
1 2 3
|
nf3an |
⊢ Ⅎ 𝑥 ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ ℝ |
| 6 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 |
| 7 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) |
| 8 |
6 7
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) |
| 9 |
5 8
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) |
| 10 |
4 9
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) |
| 13 |
|
nfra2w |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 |
| 14 |
11 12 13
|
nf3an |
⊢ Ⅎ 𝑦 ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) |
| 16 |
14 15
|
nfan |
⊢ Ⅎ 𝑦 ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 18 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → 𝐴 ⊆ ℝ ) |
| 19 |
18
|
sselda |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 20 |
|
simplrl |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
| 21 |
|
simprrl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ) |
| 22 |
21
|
r19.21bi |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑧 < 𝑥 ) |
| 23 |
19 20 22
|
nltled |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝑧 ) |
| 24 |
23
|
ex |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑥 ∈ 𝐴 → 𝑥 ≤ 𝑧 ) ) |
| 25 |
|
simprll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑧 ∈ ℝ ) |
| 26 |
|
simp2r |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐵 ⊆ ℝ ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 28 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) |
| 29 |
26 27 28
|
syl2an |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ ℝ ) |
| 30 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) |
| 31 |
|
simp2 |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ) |
| 32 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ( 𝑦 ∈ 𝐵 → 𝑥 < 𝑦 ) ) |
| 33 |
32
|
com12 |
⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → 𝑥 < 𝑦 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → 𝑥 < 𝑦 ) ) |
| 35 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ ℝ ) |
| 38 |
37
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ℝ ) |
| 39 |
|
ltnsym |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 40 |
36 38 39
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 41 |
34 40
|
syld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 42 |
41
|
an32s |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 43 |
42
|
ralimdva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) |
| 44 |
31 27 43
|
syl2an |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) ) |
| 45 |
30 44
|
mpd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) |
| 46 |
|
breq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑤 ) ) |
| 47 |
46
|
notbid |
⊢ ( 𝑥 = 𝑤 → ( ¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤 ) ) |
| 48 |
47
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑦 < 𝑤 ) |
| 49 |
45 48
|
sylib |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑤 ∈ 𝐴 ¬ 𝑦 < 𝑤 ) |
| 50 |
|
ralnex |
⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑦 < 𝑤 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) |
| 51 |
49 50
|
sylib |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ¬ ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) |
| 52 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 𝑧 ↔ 𝑦 < 𝑧 ) ) |
| 53 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 < 𝑤 ↔ 𝑦 < 𝑤 ) ) |
| 54 |
53
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) |
| 55 |
52 54
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ↔ ( 𝑦 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) ) |
| 56 |
|
simplrr |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) |
| 57 |
56
|
adantl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) |
| 58 |
55 57 29
|
rspcdva |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑦 < 𝑤 ) ) |
| 59 |
51 58
|
mtod |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑦 < 𝑧 ) |
| 60 |
25 29 59
|
nltled |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ∧ 𝑦 ∈ 𝐵 ) ) → 𝑧 ≤ 𝑦 ) |
| 61 |
60
|
expr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑦 ∈ 𝐵 → 𝑧 ≤ 𝑦 ) ) |
| 62 |
24 61
|
anim12d |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 63 |
62
|
expd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) ) |
| 64 |
16 17 63
|
ralrimd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 65 |
10 64
|
ralrimi |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ ∧ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 66 |
|
simp2l |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐴 ⊆ ℝ ) |
| 67 |
|
simp1l |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐴 ≠ ∅ ) |
| 68 |
|
simp1r |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → 𝐵 ≠ ∅ ) |
| 69 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 70 |
68 69
|
sylib |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 71 |
26
|
sseld |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ ℝ ) ) |
| 72 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑦 ) |
| 73 |
|
breq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 < 𝑦 ↔ 𝑥 < 𝑧 ) ) |
| 74 |
73
|
ralbidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 75 |
74
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑦 → ( 𝑧 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 76 |
72 75
|
sylbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 → ( 𝑧 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 77 |
76
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝑧 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 78 |
71 77
|
jcad |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( 𝑧 ∈ 𝐵 → ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) ) |
| 79 |
78
|
eximdv |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ( ∃ 𝑧 𝑧 ∈ 𝐵 → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) ) |
| 80 |
70 79
|
mpd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 81 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) ) |
| 82 |
80 81
|
sylibr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) |
| 83 |
|
axsup |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 < 𝑧 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) |
| 84 |
66 67 82 83
|
syl3anc |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑧 < 𝑥 ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 < 𝑧 → ∃ 𝑤 ∈ 𝐴 𝑥 < 𝑤 ) ) ) |
| 85 |
65 84
|
reximddv |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 86 |
85
|
3expib |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 87 |
|
1re |
⊢ 1 ∈ ℝ |
| 88 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) |
| 89 |
|
breq2 |
⊢ ( 𝑧 = 1 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ 1 ) ) |
| 90 |
|
breq1 |
⊢ ( 𝑧 = 1 → ( 𝑧 ≤ 𝑦 ↔ 1 ≤ 𝑦 ) ) |
| 91 |
89 90
|
anbi12d |
⊢ ( 𝑧 = 1 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) ) |
| 92 |
91
|
2ralbidv |
⊢ ( 𝑧 = 1 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) ) |
| 93 |
92
|
rspcev |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 94 |
87 88 93
|
sylancr |
⊢ ( 𝐴 = ∅ → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 95 |
94
|
a1d |
⊢ ( 𝐴 = ∅ → ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 96 |
|
rzal |
⊢ ( 𝐵 = ∅ → ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) |
| 97 |
96
|
ralrimivw |
⊢ ( 𝐵 = ∅ → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 1 ∧ 1 ≤ 𝑦 ) ) |
| 98 |
87 97 93
|
sylancr |
⊢ ( 𝐵 = ∅ → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 99 |
98
|
a1d |
⊢ ( 𝐵 = ∅ → ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) ) |
| 100 |
86 95 99
|
pm2.61iine |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |
| 101 |
100
|
3impa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 < 𝑦 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) ) |