Metamath Proof Explorer


Theorem dedlem0a

Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 4-Dec-2012)

Ref Expression
Assertion dedlem0a ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒𝜑 ) → ( 𝜓𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 iba ( 𝜑 → ( 𝜓 ↔ ( 𝜓𝜑 ) ) )
2 biimt ( ( 𝜒𝜑 ) → ( ( 𝜓𝜑 ) ↔ ( ( 𝜒𝜑 ) → ( 𝜓𝜑 ) ) ) )
3 2 jarri ( 𝜑 → ( ( 𝜓𝜑 ) ↔ ( ( 𝜒𝜑 ) → ( 𝜓𝜑 ) ) ) )
4 1 3 bitrd ( 𝜑 → ( 𝜓 ↔ ( ( 𝜒𝜑 ) → ( 𝜓𝜑 ) ) ) )