Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedlem0b | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → ( 𝜒 ∧ 𝜑 ) ) ) | |
| 2 | 1 | imim2d | ⊢ ( ¬ 𝜑 → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → ( 𝜒 ∧ 𝜑 ) ) ) ) |
| 3 | 2 | com23 | ⊢ ( ¬ 𝜑 → ( 𝜓 → ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) ) ) |
| 4 | pm2.21 | ⊢ ( ¬ 𝜓 → ( 𝜓 → 𝜑 ) ) | |
| 5 | simpr | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜑 ) | |
| 6 | 4 5 | imim12i | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) → ( ¬ 𝜓 → 𝜑 ) ) |
| 7 | 6 | con1d | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) → ( ¬ 𝜑 → 𝜓 ) ) |
| 8 | 7 | com12 | ⊢ ( ¬ 𝜑 → ( ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) → 𝜓 ) ) |
| 9 | 3 8 | impbid | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) ) ) |