Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dedlem0b | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → ( 𝜒 ∧ 𝜑 ) ) ) | |
2 | 1 | imim2d | ⊢ ( ¬ 𝜑 → ( ( 𝜓 → 𝜑 ) → ( 𝜓 → ( 𝜒 ∧ 𝜑 ) ) ) ) |
3 | 2 | com23 | ⊢ ( ¬ 𝜑 → ( 𝜓 → ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) ) ) |
4 | pm2.21 | ⊢ ( ¬ 𝜓 → ( 𝜓 → 𝜑 ) ) | |
5 | simpr | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜑 ) | |
6 | 4 5 | imim12i | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) → ( ¬ 𝜓 → 𝜑 ) ) |
7 | 6 | con1d | ⊢ ( ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) → ( ¬ 𝜑 → 𝜓 ) ) |
8 | 7 | com12 | ⊢ ( ¬ 𝜑 → ( ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) → 𝜓 ) ) |
9 | 3 8 | impbid | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( ( 𝜓 → 𝜑 ) → ( 𝜒 ∧ 𝜑 ) ) ) ) |