Metamath Proof Explorer


Theorem dedlem0b

Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994)

Ref Expression
Assertion dedlem0b ( ¬ 𝜑 → ( 𝜓 ↔ ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ 𝜑 → ( 𝜑 → ( 𝜒𝜑 ) ) )
2 1 imim2d ( ¬ 𝜑 → ( ( 𝜓𝜑 ) → ( 𝜓 → ( 𝜒𝜑 ) ) ) )
3 2 com23 ( ¬ 𝜑 → ( 𝜓 → ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) ) )
4 pm2.21 ( ¬ 𝜓 → ( 𝜓𝜑 ) )
5 simpr ( ( 𝜒𝜑 ) → 𝜑 )
6 4 5 imim12i ( ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) → ( ¬ 𝜓𝜑 ) )
7 6 con1d ( ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) → ( ¬ 𝜑𝜓 ) )
8 7 com12 ( ¬ 𝜑 → ( ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) → 𝜓 ) )
9 3 8 impbid ( ¬ 𝜑 → ( 𝜓 ↔ ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) ) )