Metamath Proof Explorer


Theorem dedlema

Description: Lemma for weak deduction theorem. See also ifptru . (Contributed by NM, 26-Jun-2002) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion dedlema ( 𝜑 → ( 𝜓 ↔ ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 orc ( ( 𝜓𝜑 ) → ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) )
2 1 expcom ( 𝜑 → ( 𝜓 → ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) )
3 simpl ( ( 𝜓𝜑 ) → 𝜓 )
4 3 a1i ( 𝜑 → ( ( 𝜓𝜑 ) → 𝜓 ) )
5 pm2.24 ( 𝜑 → ( ¬ 𝜑𝜓 ) )
6 5 adantld ( 𝜑 → ( ( 𝜒 ∧ ¬ 𝜑 ) → 𝜓 ) )
7 4 6 jaod ( 𝜑 → ( ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) → 𝜓 ) )
8 2 7 impbid ( 𝜑 → ( 𝜓 ↔ ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) )