Description: Lemma for weak deduction theorem. See also ifptru . (Contributed by NM, 26-Jun-2002) (Proof shortened by Andrew Salmon, 7-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dedlema | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( ( 𝜓 ∧ 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) | |
| 2 | 1 | expcom | ⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
| 3 | simpl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜓 ) | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) → 𝜓 ) ) |
| 5 | pm2.24 | ⊢ ( 𝜑 → ( ¬ 𝜑 → 𝜓 ) ) | |
| 6 | 5 | adantld | ⊢ ( 𝜑 → ( ( 𝜒 ∧ ¬ 𝜑 ) → 𝜓 ) ) |
| 7 | 4 6 | jaod | ⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) → 𝜓 ) ) |
| 8 | 2 7 | impbid | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |