Description: Lemma for weak deduction theorem. See also ifpfal . (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dedlemb | ⊢ ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc | ⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) | |
2 | 1 | expcom | ⊢ ( ¬ 𝜑 → ( 𝜒 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
3 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜒 ) ) | |
4 | 3 | adantld | ⊢ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) ) |
5 | simpl | ⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) → 𝜒 ) | |
6 | 5 | a1i | ⊢ ( ¬ 𝜑 → ( ( 𝜒 ∧ ¬ 𝜑 ) → 𝜒 ) ) |
7 | 4 6 | jaod | ⊢ ( ¬ 𝜑 → ( ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) → 𝜒 ) ) |
8 | 2 7 | impbid | ⊢ ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |