Metamath Proof Explorer


Theorem dedlemb

Description: Lemma for weak deduction theorem. See also ifpfal . (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion dedlemb ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 olc ( ( 𝜒 ∧ ¬ 𝜑 ) → ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) )
2 1 expcom ( ¬ 𝜑 → ( 𝜒 → ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) )
3 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜒 ) )
4 3 adantld ( ¬ 𝜑 → ( ( 𝜓𝜑 ) → 𝜒 ) )
5 simpl ( ( 𝜒 ∧ ¬ 𝜑 ) → 𝜒 )
6 5 a1i ( ¬ 𝜑 → ( ( 𝜒 ∧ ¬ 𝜑 ) → 𝜒 ) )
7 4 6 jaod ( ¬ 𝜑 → ( ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) → 𝜒 ) )
8 2 7 impbid ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) )