Metamath Proof Explorer


Theorem dedth3h

Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h . (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses dedth3h.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜃𝜏 ) )
dedth3h.2 ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑅 ) → ( 𝜏𝜂 ) )
dedth3h.3 ( 𝐶 = if ( 𝜒 , 𝐶 , 𝑆 ) → ( 𝜂𝜁 ) )
dedth3h.4 𝜁
Assertion dedth3h ( ( 𝜑𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 dedth3h.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜃𝜏 ) )
2 dedth3h.2 ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑅 ) → ( 𝜏𝜂 ) )
3 dedth3h.3 ( 𝐶 = if ( 𝜒 , 𝐶 , 𝑆 ) → ( 𝜂𝜁 ) )
4 dedth3h.4 𝜁
5 1 imbi2d ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( ( ( 𝜓𝜒 ) → 𝜃 ) ↔ ( ( 𝜓𝜒 ) → 𝜏 ) ) )
6 2 3 4 dedth2h ( ( 𝜓𝜒 ) → 𝜏 )
7 5 6 dedth ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
8 7 3impib ( ( 𝜑𝜓𝜒 ) → 𝜃 )