Description: Weak deduction theorem eliminating three hypotheses. See comments in dedth2h . (Contributed by NM, 15-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dedth3h.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜃 ↔ 𝜏 ) ) | |
dedth3h.2 | ⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑅 ) → ( 𝜏 ↔ 𝜂 ) ) | ||
dedth3h.3 | ⊢ ( 𝐶 = if ( 𝜒 , 𝐶 , 𝑆 ) → ( 𝜂 ↔ 𝜁 ) ) | ||
dedth3h.4 | ⊢ 𝜁 | ||
Assertion | dedth3h | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth3h.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( 𝜃 ↔ 𝜏 ) ) | |
2 | dedth3h.2 | ⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑅 ) → ( 𝜏 ↔ 𝜂 ) ) | |
3 | dedth3h.3 | ⊢ ( 𝐶 = if ( 𝜒 , 𝐶 , 𝑆 ) → ( 𝜂 ↔ 𝜁 ) ) | |
4 | dedth3h.4 | ⊢ 𝜁 | |
5 | 1 | imbi2d | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐷 ) → ( ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) ) ) |
6 | 2 3 4 | dedth2h | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜏 ) |
7 | 5 6 | dedth | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) ) |
8 | 7 | 3impib | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |