Metamath Proof Explorer


Theorem dedth4h

Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h . (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses dedth4h.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜏𝜂 ) )
dedth4h.2 ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( 𝜂𝜁 ) )
dedth4h.3 ( 𝐶 = if ( 𝜒 , 𝐶 , 𝐹 ) → ( 𝜁𝜎 ) )
dedth4h.4 ( 𝐷 = if ( 𝜃 , 𝐷 , 𝐺 ) → ( 𝜎𝜌 ) )
dedth4h.5 𝜌
Assertion dedth4h ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 dedth4h.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜏𝜂 ) )
2 dedth4h.2 ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( 𝜂𝜁 ) )
3 dedth4h.3 ( 𝐶 = if ( 𝜒 , 𝐶 , 𝐹 ) → ( 𝜁𝜎 ) )
4 dedth4h.4 ( 𝐷 = if ( 𝜃 , 𝐷 , 𝐺 ) → ( 𝜎𝜌 ) )
5 dedth4h.5 𝜌
6 1 imbi2d ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( ( ( 𝜒𝜃 ) → 𝜏 ) ↔ ( ( 𝜒𝜃 ) → 𝜂 ) ) )
7 2 imbi2d ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( ( ( 𝜒𝜃 ) → 𝜂 ) ↔ ( ( 𝜒𝜃 ) → 𝜁 ) ) )
8 3 4 5 dedth2h ( ( 𝜒𝜃 ) → 𝜁 )
9 6 7 8 dedth2h ( ( 𝜑𝜓 ) → ( ( 𝜒𝜃 ) → 𝜏 ) )
10 9 imp ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → 𝜏 )