Step |
Hyp |
Ref |
Expression |
1 |
|
dedth4h.1 |
⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜏 ↔ 𝜂 ) ) |
2 |
|
dedth4h.2 |
⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( 𝜂 ↔ 𝜁 ) ) |
3 |
|
dedth4h.3 |
⊢ ( 𝐶 = if ( 𝜒 , 𝐶 , 𝐹 ) → ( 𝜁 ↔ 𝜎 ) ) |
4 |
|
dedth4h.4 |
⊢ ( 𝐷 = if ( 𝜃 , 𝐷 , 𝐺 ) → ( 𝜎 ↔ 𝜌 ) ) |
5 |
|
dedth4h.5 |
⊢ 𝜌 |
6 |
1
|
imbi2d |
⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ↔ ( ( 𝜒 ∧ 𝜃 ) → 𝜂 ) ) ) |
7 |
2
|
imbi2d |
⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( ( ( 𝜒 ∧ 𝜃 ) → 𝜂 ) ↔ ( ( 𝜒 ∧ 𝜃 ) → 𝜁 ) ) ) |
8 |
3 4 5
|
dedth2h |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜁 ) |
9 |
6 7 8
|
dedth2h |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) |
10 |
9
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |