Metamath Proof Explorer


Theorem dedth4v

Description: Weak deduction theorem for eliminating a hypothesis with 4 class variables. See comments in dedth2v . (Contributed by NM, 21-Apr-2007) (Proof shortened by Eric Schmidt, 28-Jul-2009)

Ref Expression
Hypotheses dedth4v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜓𝜒 ) )
dedth4v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑆 ) → ( 𝜒𝜃 ) )
dedth4v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑇 ) → ( 𝜃𝜏 ) )
dedth4v.4 ( 𝐷 = if ( 𝜑 , 𝐷 , 𝑈 ) → ( 𝜏𝜂 ) )
dedth4v.5 𝜂
Assertion dedth4v ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 dedth4v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜓𝜒 ) )
2 dedth4v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝑆 ) → ( 𝜒𝜃 ) )
3 dedth4v.3 ( 𝐶 = if ( 𝜑 , 𝐶 , 𝑇 ) → ( 𝜃𝜏 ) )
4 dedth4v.4 ( 𝐷 = if ( 𝜑 , 𝐷 , 𝑈 ) → ( 𝜏𝜂 ) )
5 dedth4v.5 𝜂
6 1 2 3 4 5 dedth4h ( ( ( 𝜑𝜑 ) ∧ ( 𝜑𝜑 ) ) → 𝜓 )
7 6 anidms ( ( 𝜑𝜑 ) → 𝜓 )
8 7 anidms ( 𝜑𝜓 )