Metamath Proof Explorer


Theorem deg1addle

Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y 𝑌 = ( Poly1𝑅 )
deg1addle.d 𝐷 = ( deg1𝑅 )
deg1addle.r ( 𝜑𝑅 ∈ Ring )
deg1addle.b 𝐵 = ( Base ‘ 𝑌 )
deg1addle.p + = ( +g𝑌 )
deg1addle.f ( 𝜑𝐹𝐵 )
deg1addle.g ( 𝜑𝐺𝐵 )
Assertion deg1addle ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y 𝑌 = ( Poly1𝑅 )
2 deg1addle.d 𝐷 = ( deg1𝑅 )
3 deg1addle.r ( 𝜑𝑅 ∈ Ring )
4 deg1addle.b 𝐵 = ( Base ‘ 𝑌 )
5 deg1addle.p + = ( +g𝑌 )
6 deg1addle.f ( 𝜑𝐹𝐵 )
7 deg1addle.g ( 𝜑𝐺𝐵 )
8 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
9 2 deg1fval 𝐷 = ( 1o mDeg 𝑅 )
10 1on 1o ∈ On
11 10 a1i ( 𝜑 → 1o ∈ On )
12 eqid ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) )
13 1 8 5 ply1plusg + = ( +g ‘ ( 1o mPoly 𝑅 ) )
14 1 4 ply1bascl2 ( 𝐹𝐵𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
15 6 14 syl ( 𝜑𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
16 1 4 ply1bascl2 ( 𝐺𝐵𝐺 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
17 7 16 syl ( 𝜑𝐺 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) )
18 8 9 11 3 12 13 15 17 mdegaddle ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )