Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
deg1addle.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
deg1addle.p |
⊢ + = ( +g ‘ 𝑌 ) |
6 |
|
deg1addle.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
deg1addle.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
9 |
2
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
10 |
|
1on |
⊢ 1o ∈ On |
11 |
10
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
12 |
|
eqid |
⊢ ( Base ‘ ( 1o mPoly 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
13 |
1 8 5
|
ply1plusg |
⊢ + = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
14 |
1 4
|
ply1bascl2 |
⊢ ( 𝐹 ∈ 𝐵 → 𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
16 |
1 4
|
ply1bascl2 |
⊢ ( 𝐺 ∈ 𝐵 → 𝐺 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
17 |
7 16
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ ( 1o mPoly 𝑅 ) ) ) |
18 |
8 9 11 3 12 13 15 17
|
mdegaddle |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 + 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |