Step |
Hyp |
Ref |
Expression |
1 |
|
deg1leb.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1leb.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1leb.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
deg1leb.y |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
deg1leb.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
6 |
1 2 3
|
deg1xrcl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
7 |
|
nn0re |
⊢ ( 𝐺 ∈ ℕ0 → 𝐺 ∈ ℝ ) |
8 |
7
|
rexrd |
⊢ ( 𝐺 ∈ ℕ0 → 𝐺 ∈ ℝ* ) |
9 |
|
xrltnle |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ 𝐺 ∈ ℝ* ) → ( ( 𝐷 ‘ 𝐹 ) < 𝐺 ↔ ¬ 𝐺 ≤ ( 𝐷 ‘ 𝐹 ) ) ) |
10 |
6 8 9
|
syl2an |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐹 ) < 𝐺 ↔ ¬ 𝐺 ≤ ( 𝐷 ‘ 𝐹 ) ) ) |
11 |
1 2 3 4 5
|
deg1lt |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ ( 𝐷 ‘ 𝐹 ) < 𝐺 ) → ( 𝐴 ‘ 𝐺 ) = 0 ) |
12 |
11
|
3expia |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐹 ) < 𝐺 → ( 𝐴 ‘ 𝐺 ) = 0 ) ) |
13 |
10 12
|
sylbird |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ) → ( ¬ 𝐺 ≤ ( 𝐷 ‘ 𝐹 ) → ( 𝐴 ‘ 𝐺 ) = 0 ) ) |
14 |
13
|
necon1ad |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝐺 ) ≠ 0 → 𝐺 ≤ ( 𝐷 ‘ 𝐹 ) ) ) |
15 |
14
|
3impia |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝐺 ) ≠ 0 ) → 𝐺 ≤ ( 𝐷 ‘ 𝐹 ) ) |