Metamath Proof Explorer


Theorem deg1ldgdomn

Description: A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1z.d 𝐷 = ( deg1𝑅 )
deg1z.p 𝑃 = ( Poly1𝑅 )
deg1z.z 0 = ( 0g𝑃 )
deg1nn0cl.b 𝐵 = ( Base ‘ 𝑃 )
deg1ldgdomn.e 𝐸 = ( RLReg ‘ 𝑅 )
deg1ldgdomn.a 𝐴 = ( coe1𝐹 )
Assertion deg1ldgdomn ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → ( 𝐴 ‘ ( 𝐷𝐹 ) ) ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 deg1z.d 𝐷 = ( deg1𝑅 )
2 deg1z.p 𝑃 = ( Poly1𝑅 )
3 deg1z.z 0 = ( 0g𝑃 )
4 deg1nn0cl.b 𝐵 = ( Base ‘ 𝑃 )
5 deg1ldgdomn.e 𝐸 = ( RLReg ‘ 𝑅 )
6 deg1ldgdomn.a 𝐴 = ( coe1𝐹 )
7 simp1 ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → 𝑅 ∈ Domn )
8 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
9 6 4 2 8 coe1f ( 𝐹𝐵𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
10 9 3ad2ant2 ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
11 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
12 1 2 3 4 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )
13 11 12 syl3an1 ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )
14 10 13 ffvelrnd ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → ( 𝐴 ‘ ( 𝐷𝐹 ) ) ∈ ( Base ‘ 𝑅 ) )
15 eqid ( 0g𝑅 ) = ( 0g𝑅 )
16 1 2 3 4 15 6 deg1ldg ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐴 ‘ ( 𝐷𝐹 ) ) ≠ ( 0g𝑅 ) )
17 11 16 syl3an1 ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → ( 𝐴 ‘ ( 𝐷𝐹 ) ) ≠ ( 0g𝑅 ) )
18 8 5 15 domnrrg ( ( 𝑅 ∈ Domn ∧ ( 𝐴 ‘ ( 𝐷𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐴 ‘ ( 𝐷𝐹 ) ) ≠ ( 0g𝑅 ) ) → ( 𝐴 ‘ ( 𝐷𝐹 ) ) ∈ 𝐸 )
19 7 14 17 18 syl3anc ( ( 𝑅 ∈ Domn ∧ 𝐹𝐵𝐹0 ) → ( 𝐴 ‘ ( 𝐷𝐹 ) ) ∈ 𝐸 )