Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1z.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1z.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
deg1nn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
deg1ldgdomn.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
6 |
|
deg1ldgdomn.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
7 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝑅 ∈ Domn ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
6 4 2 8
|
coe1f |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → 𝐴 : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
11 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
12 |
1 2 3 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
13 |
11 12
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
14 |
10 13
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
16 |
1 2 3 4 15 6
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
17 |
11 16
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
18 |
8 5 15
|
domnrrg |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ 𝐸 ) |
19 |
7 14 17 18
|
syl3anc |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐴 ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ 𝐸 ) |