Metamath Proof Explorer


Theorem deg1le0

Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1le0.d 𝐷 = ( deg1𝑅 )
deg1le0.p 𝑃 = ( Poly1𝑅 )
deg1le0.b 𝐵 = ( Base ‘ 𝑃 )
deg1le0.a 𝐴 = ( algSc ‘ 𝑃 )
Assertion deg1le0 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → ( ( 𝐷𝐹 ) ≤ 0 ↔ 𝐹 = ( 𝐴 ‘ ( ( coe1𝐹 ) ‘ 0 ) ) ) )

Proof

Step Hyp Ref Expression
1 deg1le0.d 𝐷 = ( deg1𝑅 )
2 deg1le0.p 𝑃 = ( Poly1𝑅 )
3 deg1le0.b 𝐵 = ( Base ‘ 𝑃 )
4 deg1le0.a 𝐴 = ( algSc ‘ 𝑃 )
5 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
6 1 deg1fval 𝐷 = ( 1o mDeg 𝑅 )
7 1on 1o ∈ On
8 7 a1i ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → 1o ∈ On )
9 simpl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → 𝑅 ∈ Ring )
10 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
11 2 10 3 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
12 2 4 ply1ascl 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) )
13 simpr ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → 𝐹𝐵 )
14 5 6 8 9 11 12 13 mdegle0 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → ( ( 𝐷𝐹 ) ≤ 0 ↔ 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 1o × { 0 } ) ) ) ) )
15 0nn0 0 ∈ ℕ0
16 eqid ( coe1𝐹 ) = ( coe1𝐹 )
17 16 coe1fv ( ( 𝐹𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1𝐹 ) ‘ 0 ) = ( 𝐹 ‘ ( 1o × { 0 } ) ) )
18 13 15 17 sylancl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → ( ( coe1𝐹 ) ‘ 0 ) = ( 𝐹 ‘ ( 1o × { 0 } ) ) )
19 18 fveq2d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → ( 𝐴 ‘ ( ( coe1𝐹 ) ‘ 0 ) ) = ( 𝐴 ‘ ( 𝐹 ‘ ( 1o × { 0 } ) ) ) )
20 19 eqeq2d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → ( 𝐹 = ( 𝐴 ‘ ( ( coe1𝐹 ) ‘ 0 ) ) ↔ 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 1o × { 0 } ) ) ) ) )
21 14 20 bitr4d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵 ) → ( ( 𝐷𝐹 ) ≤ 0 ↔ 𝐹 = ( 𝐴 ‘ ( ( coe1𝐹 ) ‘ 0 ) ) ) )