Step |
Hyp |
Ref |
Expression |
1 |
|
deg1le0.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1le0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1le0.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
deg1le0.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
5 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
6 |
1
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
7 |
|
1on |
⊢ 1o ∈ On |
8 |
7
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → 1o ∈ On ) |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
11 |
2 10 3
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
12 |
2 4
|
ply1ascl |
⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
13 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
14 |
5 6 8 9 11 12 13
|
mdegle0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ≤ 0 ↔ 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 1o × { 0 } ) ) ) ) ) |
15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
16 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
17 |
16
|
coe1fv |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = ( 𝐹 ‘ ( 1o × { 0 } ) ) ) |
18 |
13 15 17
|
sylancl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = ( 𝐹 ‘ ( 1o × { 0 } ) ) ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐴 ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) = ( 𝐴 ‘ ( 𝐹 ‘ ( 1o × { 0 } ) ) ) ) |
20 |
19
|
eqeq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 = ( 𝐴 ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ↔ 𝐹 = ( 𝐴 ‘ ( 𝐹 ‘ ( 1o × { 0 } ) ) ) ) ) |
21 |
14 20
|
bitr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ≤ 0 ↔ 𝐹 = ( 𝐴 ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) ) |