| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1le0.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1le0.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1le0.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | deg1le0.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 6 | 1 | deg1fval | ⊢ 𝐷  =  ( 1o  mDeg  𝑅 ) | 
						
							| 7 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  1o  ∈  On ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 10 | 2 3 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 11 | 2 4 | ply1ascl | ⊢ 𝐴  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  𝐹  ∈  𝐵 ) | 
						
							| 13 | 5 6 8 9 10 11 12 | mdegle0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( ( 𝐷 ‘ 𝐹 )  ≤  0  ↔  𝐹  =  ( 𝐴 ‘ ( 𝐹 ‘ ( 1o  ×  { 0 } ) ) ) ) ) | 
						
							| 14 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 15 |  | eqid | ⊢ ( coe1 ‘ 𝐹 )  =  ( coe1 ‘ 𝐹 ) | 
						
							| 16 | 15 | coe1fv | ⊢ ( ( 𝐹  ∈  𝐵  ∧  0  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝐹 ) ‘ 0 )  =  ( 𝐹 ‘ ( 1o  ×  { 0 } ) ) ) | 
						
							| 17 | 12 14 16 | sylancl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( ( coe1 ‘ 𝐹 ) ‘ 0 )  =  ( 𝐹 ‘ ( 1o  ×  { 0 } ) ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( 𝐴 ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) )  =  ( 𝐴 ‘ ( 𝐹 ‘ ( 1o  ×  { 0 } ) ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( 𝐹  =  ( 𝐴 ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) )  ↔  𝐹  =  ( 𝐴 ‘ ( 𝐹 ‘ ( 1o  ×  { 0 } ) ) ) ) ) | 
						
							| 20 | 13 19 | bitr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( ( 𝐷 ‘ 𝐹 )  ≤  0  ↔  𝐹  =  ( 𝐴 ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) ) |