Step |
Hyp |
Ref |
Expression |
1 |
|
deg1sclb.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1sclb.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1sclb.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
deg1sclb.1 |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
deg1sclb.2 |
⊢ 𝑂 = ( 0g ‘ 𝑃 ) |
6 |
|
deg1sclb.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
deg1sclb.4 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
deg1sclb.5 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ 0 ) |
9 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
10 |
1 2 4 9
|
deg1le0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) ≤ 0 ↔ 𝐹 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) ∧ ( 𝐷 ‘ 𝐹 ) ≤ 0 ) → 𝐹 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) |
12 |
6 7 8 11
|
syl21anc |
⊢ ( 𝜑 → 𝐹 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑂 ) → 𝐹 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑂 ) → 𝐹 = 𝑂 ) |
15 |
13 14
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑂 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) = 𝑂 ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) → 𝑅 ∈ Ring ) |
17 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
18 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
18 4 2 19
|
coe1fvalcl |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
21 |
7 17 20
|
sylancl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) |
24 |
2 9 3 5 19
|
ply1scln0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ≠ 𝑂 ) |
25 |
16 22 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ≠ 𝑂 ) |
26 |
25
|
ex |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ≠ 0 → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ≠ 𝑂 ) ) |
27 |
26
|
necon4d |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) = 𝑂 → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) ) |
28 |
27
|
imp |
⊢ ( ( 𝜑 ∧ ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) = 𝑂 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) |
29 |
15 28
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 = 𝑂 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) |
30 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) → 𝐹 = ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) → ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) → ( ( algSc ‘ 𝑃 ) ‘ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) ) = ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) |
33 |
2 9 3 5 6
|
ply1ascl0 |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ 0 ) = 𝑂 ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) → ( ( algSc ‘ 𝑃 ) ‘ 0 ) = 𝑂 ) |
35 |
30 32 34
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) → 𝐹 = 𝑂 ) |
36 |
29 35
|
impbida |
⊢ ( 𝜑 → ( 𝐹 = 𝑂 ↔ ( ( coe1 ‘ 𝐹 ) ‘ 0 ) = 0 ) ) |