Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1z.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1z.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
deg1nn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
1 2 3 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
6 |
|
nn0nlt0 |
⊢ ( ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 → ¬ ( 𝐷 ‘ 𝐹 ) < 0 ) |
7 |
5 6
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ¬ ( 𝐷 ‘ 𝐹 ) < 0 ) |
8 |
7
|
3expia |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 ≠ 0 → ¬ ( 𝐷 ‘ 𝐹 ) < 0 ) ) |
9 |
8
|
necon4ad |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) < 0 → 𝐹 = 0 ) ) |
10 |
1 2 3
|
deg1z |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ 0 ) = -∞ ) |
11 |
|
mnflt0 |
⊢ -∞ < 0 |
12 |
10 11
|
eqbrtrdi |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 ‘ 0 ) < 0 ) |
13 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐷 ‘ 0 ) < 0 ) |
14 |
|
fveq2 |
⊢ ( 𝐹 = 0 → ( 𝐷 ‘ 𝐹 ) = ( 𝐷 ‘ 0 ) ) |
15 |
14
|
breq1d |
⊢ ( 𝐹 = 0 → ( ( 𝐷 ‘ 𝐹 ) < 0 ↔ ( 𝐷 ‘ 0 ) < 0 ) ) |
16 |
13 15
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( 𝐹 = 0 → ( 𝐷 ‘ 𝐹 ) < 0 ) ) |
17 |
9 16
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ) → ( ( 𝐷 ‘ 𝐹 ) < 0 ↔ 𝐹 = 0 ) ) |