Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mul.1 |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1mul.2 |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1mul.3 |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
deg1mul.4 |
⊢ · = ( .r ‘ 𝑃 ) |
5 |
|
deg1mul.5 |
⊢ 0 = ( 0g ‘ 𝑃 ) |
6 |
|
deg1mul.6 |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
7 |
|
deg1mul.7 |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
deg1mul.8 |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
9 |
|
deg1mul.9 |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
deg1mul.10 |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
11 |
|
eqid |
⊢ ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 ) |
12 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
14 |
1 2 5 3
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
15 |
13 7 8 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
16 |
|
eqid |
⊢ ( coe1 ‘ 𝐹 ) = ( coe1 ‘ 𝐹 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
18 |
16 3 2 17
|
coe1fvalcl |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ) |
19 |
7 15 18
|
syl2anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
21 |
1 2 5 3 20 16
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
22 |
13 7 8 21
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
23 |
17 11 20
|
domnrrg |
⊢ ( ( 𝑅 ∈ Domn ∧ ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
24 |
6 19 22 23
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ ( RLReg ‘ 𝑅 ) ) |
25 |
1 2 11 3 4 5 13 7 8 24 9 10
|
deg1mul2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ) |