Metamath Proof Explorer


Theorem deg1mul

Description: Degree of multiplication of two nonzero polynomials in a domain. (Contributed by metakunt, 6-May-2025)

Ref Expression
Hypotheses deg1mul.1 𝐷 = ( deg1𝑅 )
deg1mul.2 𝑃 = ( Poly1𝑅 )
deg1mul.3 𝐵 = ( Base ‘ 𝑃 )
deg1mul.4 · = ( .r𝑃 )
deg1mul.5 0 = ( 0g𝑃 )
deg1mul.6 ( 𝜑𝑅 ∈ Domn )
deg1mul.7 ( 𝜑𝐹𝐵 )
deg1mul.8 ( 𝜑𝐹0 )
deg1mul.9 ( 𝜑𝐺𝐵 )
deg1mul.10 ( 𝜑𝐺0 )
Assertion deg1mul ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 deg1mul.1 𝐷 = ( deg1𝑅 )
2 deg1mul.2 𝑃 = ( Poly1𝑅 )
3 deg1mul.3 𝐵 = ( Base ‘ 𝑃 )
4 deg1mul.4 · = ( .r𝑃 )
5 deg1mul.5 0 = ( 0g𝑃 )
6 deg1mul.6 ( 𝜑𝑅 ∈ Domn )
7 deg1mul.7 ( 𝜑𝐹𝐵 )
8 deg1mul.8 ( 𝜑𝐹0 )
9 deg1mul.9 ( 𝜑𝐺𝐵 )
10 deg1mul.10 ( 𝜑𝐺0 )
11 eqid ( RLReg ‘ 𝑅 ) = ( RLReg ‘ 𝑅 )
12 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
13 6 12 syl ( 𝜑𝑅 ∈ Ring )
14 1 2 5 3 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )
15 13 7 8 14 syl3anc ( 𝜑 → ( 𝐷𝐹 ) ∈ ℕ0 )
16 eqid ( coe1𝐹 ) = ( coe1𝐹 )
17 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
18 16 3 2 17 coe1fvalcl ( ( 𝐹𝐵 ∧ ( 𝐷𝐹 ) ∈ ℕ0 ) → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ ( Base ‘ 𝑅 ) )
19 7 15 18 syl2anc ( 𝜑 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ ( Base ‘ 𝑅 ) )
20 eqid ( 0g𝑅 ) = ( 0g𝑅 )
21 1 2 5 3 20 16 deg1ldg ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ≠ ( 0g𝑅 ) )
22 13 7 8 21 syl3anc ( 𝜑 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ≠ ( 0g𝑅 ) )
23 17 11 20 domnrrg ( ( 𝑅 ∈ Domn ∧ ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ≠ ( 0g𝑅 ) ) → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ ( RLReg ‘ 𝑅 ) )
24 6 19 22 23 syl3anc ( 𝜑 → ( ( coe1𝐹 ) ‘ ( 𝐷𝐹 ) ) ∈ ( RLReg ‘ 𝑅 ) )
25 1 2 11 3 4 5 13 7 8 24 9 10 deg1mul2 ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐷𝐹 ) + ( 𝐷𝐺 ) ) )