| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1mul2.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1mul2.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1mul2.e | ⊢ 𝐸  =  ( RLReg ‘ 𝑅 ) | 
						
							| 4 |  | deg1mul2.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | deg1mul2.t | ⊢  ·   =  ( .r ‘ 𝑃 ) | 
						
							| 6 |  | deg1mul2.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
						
							| 7 |  | deg1mul2.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 8 |  | deg1mul2.fb | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 9 |  | deg1mul2.fz | ⊢ ( 𝜑  →  𝐹  ≠   0  ) | 
						
							| 10 |  | deg1mul2.fc | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝐸 ) | 
						
							| 11 |  | deg1mul2.gb | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 12 |  | deg1mul2.gz | ⊢ ( 𝜑  →  𝐺  ≠   0  ) | 
						
							| 13 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 14 | 7 13 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 15 | 4 5 | ringcl | ⊢ ( ( 𝑃  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  ·  𝐺 )  ∈  𝐵 ) | 
						
							| 16 | 14 8 11 15 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  ∈  𝐵 ) | 
						
							| 17 | 1 2 4 | deg1xrcl | ⊢ ( ( 𝐹  ·  𝐺 )  ∈  𝐵  →  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) )  ∈  ℝ* ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) )  ∈  ℝ* ) | 
						
							| 19 | 1 2 6 4 | deg1nn0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐹  ≠   0  )  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 20 | 7 8 9 19 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 21 | 1 2 6 4 | deg1nn0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐺  ∈  𝐵  ∧  𝐺  ≠   0  )  →  ( 𝐷 ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 22 | 7 11 12 21 | syl3anc | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 23 | 20 22 | nn0addcld | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) )  ∈  ℕ0 ) | 
						
							| 24 | 23 | nn0red | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) )  ∈  ℝ ) | 
						
							| 25 | 24 | rexrd | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) )  ∈  ℝ* ) | 
						
							| 26 | 20 | nn0red | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 27 | 26 | leidd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐹 )  ≤  ( 𝐷 ‘ 𝐹 ) ) | 
						
							| 28 | 22 | nn0red | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐺 )  ∈  ℝ ) | 
						
							| 29 | 28 | leidd | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐺 )  ≤  ( 𝐷 ‘ 𝐺 ) ) | 
						
							| 30 | 2 1 7 4 5 8 11 20 22 27 29 | deg1mulle2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) )  ≤  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 32 | 2 5 31 4 1 6 7 8 9 11 12 | coe1mul4 | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝐹  ·  𝐺 ) ) ‘ ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) ) )  =  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 34 |  | eqid | ⊢ ( coe1 ‘ 𝐺 )  =  ( coe1 ‘ 𝐺 ) | 
						
							| 35 | 1 2 6 4 33 34 | deg1ldg | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐺  ∈  𝐵  ∧  𝐺  ≠   0  )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 36 | 7 11 12 35 | syl3anc | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 38 | 34 4 2 37 | coe1f | ⊢ ( 𝐺  ∈  𝐵  →  ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 39 | 11 38 | syl | ⊢ ( 𝜑  →  ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 39 22 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 3 37 31 33 | rrgeq0i | ⊢ ( ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) )  ∈  𝐸  ∧  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) )  =  ( 0g ‘ 𝑅 )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 42 | 10 40 41 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) )  =  ( 0g ‘ 𝑅 )  →  ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 43 | 42 | necon3d | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) )  ≠  ( 0g ‘ 𝑅 )  →  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) )  ≠  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 44 | 36 43 | mpd | ⊢ ( 𝜑  →  ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 45 | 32 44 | eqnetrd | ⊢ ( 𝜑  →  ( ( coe1 ‘ ( 𝐹  ·  𝐺 ) ) ‘ ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) ) )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 46 |  | eqid | ⊢ ( coe1 ‘ ( 𝐹  ·  𝐺 ) )  =  ( coe1 ‘ ( 𝐹  ·  𝐺 ) ) | 
						
							| 47 | 1 2 4 33 46 | deg1ge | ⊢ ( ( ( 𝐹  ·  𝐺 )  ∈  𝐵  ∧  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) )  ∈  ℕ0  ∧  ( ( coe1 ‘ ( 𝐹  ·  𝐺 ) ) ‘ ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) ) )  ≠  ( 0g ‘ 𝑅 ) )  →  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) )  ≤  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) ) ) | 
						
							| 48 | 16 23 45 47 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) )  ≤  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) ) ) | 
						
							| 49 | 18 25 30 48 | xrletrid | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹  ·  𝐺 ) )  =  ( ( 𝐷 ‘ 𝐹 )  +  ( 𝐷 ‘ 𝐺 ) ) ) |