Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mul2.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1mul2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1mul2.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
4 |
|
deg1mul2.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
deg1mul2.t |
⊢ · = ( .r ‘ 𝑃 ) |
6 |
|
deg1mul2.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
7 |
|
deg1mul2.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
deg1mul2.fb |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
9 |
|
deg1mul2.fz |
⊢ ( 𝜑 → 𝐹 ≠ 0 ) |
10 |
|
deg1mul2.fc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ 𝐸 ) |
11 |
|
deg1mul2.gb |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
12 |
|
deg1mul2.gz |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
13 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
15 |
4 5
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
16 |
14 8 11 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) ∈ 𝐵 ) |
17 |
1 2 4
|
deg1xrcl |
⊢ ( ( 𝐹 · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ∈ ℝ* ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ∈ ℝ* ) |
19 |
1 2 6 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
20 |
7 8 9 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
21 |
1 2 6 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
22 |
7 11 12 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℕ0 ) |
23 |
20 22
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ∈ ℕ0 ) |
24 |
23
|
nn0red |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ∈ ℝ ) |
25 |
24
|
rexrd |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ∈ ℝ* ) |
26 |
20
|
nn0red |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ ) |
27 |
26
|
leidd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐹 ) ) |
28 |
22
|
nn0red |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ ) |
29 |
28
|
leidd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ ( 𝐷 ‘ 𝐺 ) ) |
30 |
2 1 7 4 5 8 11 20 22 27 29
|
deg1mulle2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ) |
31 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
32 |
2 5 31 4 1 6 7 8 9 11 12
|
coe1mul4 |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 · 𝐺 ) ) ‘ ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ) = ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
35 |
1 2 6 4 33 34
|
deg1ldg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ∧ 𝐺 ≠ 0 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
36 |
7 11 12 35
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
37 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
38 |
34 4 2 37
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
39 |
11 38
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
40 |
39 22
|
ffvelrnd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝑅 ) ) |
41 |
3 37 31 33
|
rrgeq0i |
⊢ ( ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ∈ 𝐸 ∧ ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) = ( 0g ‘ 𝑅 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) = ( 0g ‘ 𝑅 ) ) ) |
42 |
10 40 41
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) = ( 0g ‘ 𝑅 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) = ( 0g ‘ 𝑅 ) ) ) |
43 |
42
|
necon3d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ≠ ( 0g ‘ 𝑅 ) → ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ≠ ( 0g ‘ 𝑅 ) ) ) |
44 |
36 43
|
mpd |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐹 ) ‘ ( 𝐷 ‘ 𝐹 ) ) ( .r ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ) ≠ ( 0g ‘ 𝑅 ) ) |
45 |
32 44
|
eqnetrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 · 𝐺 ) ) ‘ ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ) ≠ ( 0g ‘ 𝑅 ) ) |
46 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 · 𝐺 ) ) = ( coe1 ‘ ( 𝐹 · 𝐺 ) ) |
47 |
1 2 4 33 46
|
deg1ge |
⊢ ( ( ( 𝐹 · 𝐺 ) ∈ 𝐵 ∧ ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ∈ ℕ0 ∧ ( ( coe1 ‘ ( 𝐹 · 𝐺 ) ) ‘ ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ) ≠ ( 0g ‘ 𝑅 ) ) → ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ≤ ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ) |
48 |
16 23 45 47
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ≤ ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ) |
49 |
18 25 30 48
|
xrletrid |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐷 ‘ 𝐹 ) + ( 𝐷 ‘ 𝐺 ) ) ) |