Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mul3.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1mul3.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1mul3.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
4 |
|
deg1mul3.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
deg1mul3.t |
⊢ · = ( .r ‘ 𝑃 ) |
6 |
|
deg1mul3.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
3 7
|
rrgss |
⊢ 𝐸 ⊆ ( Base ‘ 𝑅 ) |
9 |
8
|
sseli |
⊢ ( 𝐹 ∈ 𝐸 → 𝐹 ∈ ( Base ‘ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
2 4 7 6 5 10
|
coe1sclmul |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ( Base ‘ 𝑅 ) ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = ( ( ℕ0 × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) ( coe1 ‘ 𝐺 ) ) ) |
12 |
9 11
|
syl3an2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = ( ( ℕ0 × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) ( coe1 ‘ 𝐺 ) ) ) |
13 |
12
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) = ( ( ( ℕ0 × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) ( coe1 ‘ 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
15 |
|
nn0ex |
⊢ ℕ0 ∈ V |
16 |
15
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ℕ0 ∈ V ) |
17 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
18 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐸 ) |
19 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
20 |
19 4 2 7
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
21 |
20
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
22 |
3 7 10 14 16 17 18 21
|
rrgsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( ( ( ℕ0 × { 𝐹 } ) ∘f ( .r ‘ 𝑅 ) ( coe1 ‘ 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) = ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) |
23 |
13 22
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) = ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) ) |
24 |
23
|
supeq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) = sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
25 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
27 |
2 6 7 4
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → 𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
29 |
9
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ ( Base ‘ 𝑅 ) ) |
30 |
28 29
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐴 ‘ 𝐹 ) ∈ 𝐵 ) |
31 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
32 |
4 5
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐴 ‘ 𝐹 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 ) |
33 |
26 30 31 32
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 ) |
34 |
|
eqid |
⊢ ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) |
35 |
1 2 4 14 34
|
deg1val |
⊢ ( ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
36 |
33 35
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = sup ( ( ( coe1 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
37 |
1 2 4 14 19
|
deg1val |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) = sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐷 ‘ 𝐺 ) = sup ( ( ( coe1 ‘ 𝐺 ) supp ( 0g ‘ 𝑅 ) ) , ℝ* , < ) ) |
39 |
24 36 38
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐸 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐷 ‘ ( ( 𝐴 ‘ 𝐹 ) · 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |