Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
deg1mulle2.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
deg1mulle2.t |
⊢ · = ( .r ‘ 𝑌 ) |
6 |
|
deg1mulle2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
deg1mulle2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
deg1mulle2.j1 |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
9 |
|
deg1mulle2.k1 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
10 |
|
deg1mulle2.j2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ 𝐽 ) |
11 |
|
deg1mulle2.k2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ 𝐾 ) |
12 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
13 |
2
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
14 |
|
1on |
⊢ 1o ∈ On |
15 |
14
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
16 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
17 |
1 16 4
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
18 |
1 12 5
|
ply1mulr |
⊢ · = ( .r ‘ ( 1o mPoly 𝑅 ) ) |
19 |
12 13 15 3 17 18 6 7 8 9 10 11
|
mdegmulle2 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) ≤ ( 𝐽 + 𝐾 ) ) |