Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1z.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1z.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
deg1nn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ Ring ) |
6 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ∈ 𝐵 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ∈ 𝐵 ) |
8 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥 ≠ 0 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
10 |
1 2 3 4
|
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) |
11 |
5 7 9 10
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) |
12 |
11
|
ralrimiva |
⊢ ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) |
13 |
1 2 4
|
deg1xrf |
⊢ 𝐷 : 𝐵 ⟶ ℝ* |
14 |
|
ffun |
⊢ ( 𝐷 : 𝐵 ⟶ ℝ* → Fun 𝐷 ) |
15 |
13 14
|
ax-mp |
⊢ Fun 𝐷 |
16 |
|
difss |
⊢ ( 𝐵 ∖ { 0 } ) ⊆ 𝐵 |
17 |
13
|
fdmi |
⊢ dom 𝐷 = 𝐵 |
18 |
16 17
|
sseqtrri |
⊢ ( 𝐵 ∖ { 0 } ) ⊆ dom 𝐷 |
19 |
|
funimass4 |
⊢ ( ( Fun 𝐷 ∧ ( 𝐵 ∖ { 0 } ) ⊆ dom 𝐷 ) → ( ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) ) |
20 |
15 18 19
|
mp2an |
⊢ ( ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( 𝐷 ‘ 𝑥 ) ∈ ℕ0 ) |
21 |
12 20
|
sylibr |
⊢ ( 𝑅 ∈ Ring → ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 ) |