Metamath Proof Explorer


Theorem deg1n0ima

Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1z.d 𝐷 = ( deg1𝑅 )
deg1z.p 𝑃 = ( Poly1𝑅 )
deg1z.z 0 = ( 0g𝑃 )
deg1nn0cl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion deg1n0ima ( 𝑅 ∈ Ring → ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 )

Proof

Step Hyp Ref Expression
1 deg1z.d 𝐷 = ( deg1𝑅 )
2 deg1z.p 𝑃 = ( Poly1𝑅 )
3 deg1z.z 0 = ( 0g𝑃 )
4 deg1nn0cl.b 𝐵 = ( Base ‘ 𝑃 )
5 simpl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑅 ∈ Ring )
6 eldifi ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥𝐵 )
7 6 adantl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥𝐵 )
8 eldifsni ( 𝑥 ∈ ( 𝐵 ∖ { 0 } ) → 𝑥0 )
9 8 adantl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → 𝑥0 )
10 1 2 3 4 deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → ( 𝐷𝑥 ) ∈ ℕ0 )
11 5 7 9 10 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝐷𝑥 ) ∈ ℕ0 )
12 11 ralrimiva ( 𝑅 ∈ Ring → ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( 𝐷𝑥 ) ∈ ℕ0 )
13 1 2 4 deg1xrf 𝐷 : 𝐵 ⟶ ℝ*
14 ffun ( 𝐷 : 𝐵 ⟶ ℝ* → Fun 𝐷 )
15 13 14 ax-mp Fun 𝐷
16 difss ( 𝐵 ∖ { 0 } ) ⊆ 𝐵
17 13 fdmi dom 𝐷 = 𝐵
18 16 17 sseqtrri ( 𝐵 ∖ { 0 } ) ⊆ dom 𝐷
19 funimass4 ( ( Fun 𝐷 ∧ ( 𝐵 ∖ { 0 } ) ⊆ dom 𝐷 ) → ( ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( 𝐷𝑥 ) ∈ ℕ0 ) )
20 15 18 19 mp2an ( ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 ↔ ∀ 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ( 𝐷𝑥 ) ∈ ℕ0 )
21 12 20 sylibr ( 𝑅 ∈ Ring → ( 𝐷 “ ( 𝐵 ∖ { 0 } ) ) ⊆ ℕ0 )