Metamath Proof Explorer
Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan
O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
deg1z.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
|
|
deg1z.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
|
|
deg1z.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
|
|
deg1nn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
|
Assertion |
deg1nn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
deg1z.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1z.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1z.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
4 |
|
deg1nn0cl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
1
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
6 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
7 |
6 2 3
|
ply1mpl0 |
⊢ 0 = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
8 |
2 4
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
9 |
5 6 7 8
|
mdegnn0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |