Metamath Proof Explorer


Theorem deg1nn0cl

Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses deg1z.d 𝐷 = ( deg1𝑅 )
deg1z.p 𝑃 = ( Poly1𝑅 )
deg1z.z 0 = ( 0g𝑃 )
deg1nn0cl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion deg1nn0cl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 deg1z.d 𝐷 = ( deg1𝑅 )
2 deg1z.p 𝑃 = ( Poly1𝑅 )
3 deg1z.z 0 = ( 0g𝑃 )
4 deg1nn0cl.b 𝐵 = ( Base ‘ 𝑃 )
5 1 deg1fval 𝐷 = ( 1o mDeg 𝑅 )
6 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
7 6 2 3 ply1mpl0 0 = ( 0g ‘ ( 1o mPoly 𝑅 ) )
8 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
9 2 8 4 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
10 5 6 7 9 mdegnn0cl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ( 𝐷𝐹 ) ∈ ℕ0 )