Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1z.d | ⊢ 𝐷 = ( deg1 ‘ 𝑅 ) | |
deg1z.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
deg1z.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | ||
deg1nn0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
Assertion | deg1nn0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d | ⊢ 𝐷 = ( deg1 ‘ 𝑅 ) | |
2 | deg1z.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
3 | deg1z.z | ⊢ 0 = ( 0g ‘ 𝑃 ) | |
4 | deg1nn0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
5 | 1 | deg1fval | ⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
6 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
7 | 6 2 3 | ply1mpl0 | ⊢ 0 = ( 0g ‘ ( 1o mPoly 𝑅 ) ) |
8 | eqid | ⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) | |
9 | 2 8 4 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
10 | 5 6 7 9 | mdegnn0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ( 𝐷 ‘ 𝐹 ) ∈ ℕ0 ) |