| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1z.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1z.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1z.z | ⊢  0   =  ( 0g ‘ 𝑃 ) | 
						
							| 4 |  | deg1nn0cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 | 1 2 3 4 | deg1nn0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵  ∧  𝐹  ≠   0  )  →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | 3expia | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( 𝐹  ≠   0   →  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) ) | 
						
							| 7 |  | mnfnre | ⊢ -∞  ∉  ℝ | 
						
							| 8 | 7 | neli | ⊢ ¬  -∞  ∈  ℝ | 
						
							| 9 |  | nn0re | ⊢ ( -∞  ∈  ℕ0  →  -∞  ∈  ℝ ) | 
						
							| 10 | 8 9 | mto | ⊢ ¬  -∞  ∈  ℕ0 | 
						
							| 11 | 1 2 3 | deg1z | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐷 ‘  0  )  =  -∞ ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( 𝐷 ‘  0  )  =  -∞ ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( ( 𝐷 ‘  0  )  ∈  ℕ0  ↔  -∞  ∈  ℕ0 ) ) | 
						
							| 14 | 10 13 | mtbiri | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ¬  ( 𝐷 ‘  0  )  ∈  ℕ0 ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝐹  =   0   →  ( 𝐷 ‘ 𝐹 )  =  ( 𝐷 ‘  0  ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝐹  =   0   →  ( ( 𝐷 ‘ 𝐹 )  ∈  ℕ0  ↔  ( 𝐷 ‘  0  )  ∈  ℕ0 ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( 𝐹  =   0   →  ( ¬  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0  ↔  ¬  ( 𝐷 ‘  0  )  ∈  ℕ0 ) ) | 
						
							| 18 | 14 17 | syl5ibrcom | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( 𝐹  =   0   →  ¬  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) ) | 
						
							| 19 | 18 | necon2ad | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( ( 𝐷 ‘ 𝐹 )  ∈  ℕ0  →  𝐹  ≠   0  ) ) | 
						
							| 20 | 6 19 | impbid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐵 )  →  ( 𝐹  ≠   0   ↔  ( 𝐷 ‘ 𝐹 )  ∈  ℕ0 ) ) |