| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1pw.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1pw.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1pw.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 4 |  | deg1pw.n | ⊢ 𝑁  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 5 |  | deg1pw.e | ⊢  ↑   =  ( .g ‘ 𝑁 ) | 
						
							| 6 | 2 | ply1sca | ⊢ ( 𝑅  ∈  NzRing  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 1r ‘ 𝑅 )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) )  =  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) ) ) | 
						
							| 10 |  | nzrring | ⊢ ( 𝑅  ∈  NzRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 12 | 2 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  𝑃  ∈  LMod ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 15 | 4 14 | mgpbas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑁 ) | 
						
							| 16 | 2 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 17 | 4 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝑁  ∈  Mnd ) | 
						
							| 18 | 11 16 17 | 3syl | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  𝑁  ∈  Mnd ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  𝐹  ∈  ℕ0 ) | 
						
							| 20 | 3 2 14 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 21 | 11 20 | syl | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  𝑋  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 22 | 15 5 18 19 21 | mulgnn0cld | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 𝐹  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 23 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 24 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 25 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 26 | 14 23 24 25 | lmodvs1 | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝐹  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) )  =  ( 𝐹  ↑  𝑋 ) ) | 
						
							| 27 | 13 22 26 | syl2anc | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) )  =  ( 𝐹  ↑  𝑋 ) ) | 
						
							| 28 | 9 27 | eqtrd | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) )  =  ( 𝐹  ↑  𝑋 ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) ) )  =  ( 𝐷 ‘ ( 𝐹  ↑  𝑋 ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 31 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 32 | 30 31 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 11 32 | syl | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 35 | 31 34 | nzrnz | ⊢ ( 𝑅  ∈  NzRing  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) ) | 
						
							| 37 | 1 30 2 3 24 4 5 34 | deg1tm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 1r ‘ 𝑅 )  ≠  ( 0g ‘ 𝑅 ) )  ∧  𝐹  ∈  ℕ0 )  →  ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) ) )  =  𝐹 ) | 
						
							| 38 | 11 33 36 19 37 | syl121anc | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) (  ·𝑠  ‘ 𝑃 ) ( 𝐹  ↑  𝑋 ) ) )  =  𝐹 ) | 
						
							| 39 | 29 38 | eqtr3d | ⊢ ( ( 𝑅  ∈  NzRing  ∧  𝐹  ∈  ℕ0 )  →  ( 𝐷 ‘ ( 𝐹  ↑  𝑋 ) )  =  𝐹 ) |