Step |
Hyp |
Ref |
Expression |
1 |
|
deg1pw.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1pw.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1pw.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
4 |
|
deg1pw.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
5 |
|
deg1pw.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
6 |
2
|
ply1sca |
⊢ ( 𝑅 ∈ NzRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ) |
9 |
8
|
oveq1d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) |
10 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
11 |
10
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
12 |
2
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
14 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
15 |
4
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd ) |
16 |
11 14 15
|
3syl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑁 ∈ Mnd ) |
17 |
|
simpr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℕ0 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
19 |
3 2 18
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
20 |
11 19
|
syl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
21 |
4 18
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 ) |
22 |
21 5
|
mulgnn0cl |
⊢ ( ( 𝑁 ∈ Mnd ∧ 𝐹 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐹 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
23 |
16 17 20 22
|
syl3anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐹 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
24 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
25 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
26 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) |
27 |
18 24 25 26
|
lmodvs1 |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝐹 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) = ( 𝐹 ↑ 𝑋 ) ) |
28 |
13 23 27
|
syl2anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) = ( 𝐹 ↑ 𝑋 ) ) |
29 |
9 28
|
eqtrd |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) = ( 𝐹 ↑ 𝑋 ) ) |
30 |
29
|
fveq2d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝐹 ↑ 𝑋 ) ) ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
32 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
33 |
31 32
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
34 |
11 33
|
syl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
35 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
36 |
32 35
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
38 |
1 31 2 3 25 4 5 35
|
deg1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) = 𝐹 ) |
39 |
11 34 37 17 38
|
syl121anc |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 𝐹 ↑ 𝑋 ) ) ) = 𝐹 ) |
40 |
30 39
|
eqtr3d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐹 ↑ 𝑋 ) ) = 𝐹 ) |