Metamath Proof Explorer


Theorem deg1pwle

Description: Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1pw.d 𝐷 = ( deg1𝑅 )
deg1pw.p 𝑃 = ( Poly1𝑅 )
deg1pw.x 𝑋 = ( var1𝑅 )
deg1pw.n 𝑁 = ( mulGrp ‘ 𝑃 )
deg1pw.e = ( .g𝑁 )
Assertion deg1pwle ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐹 𝑋 ) ) ≤ 𝐹 )

Proof

Step Hyp Ref Expression
1 deg1pw.d 𝐷 = ( deg1𝑅 )
2 deg1pw.p 𝑃 = ( Poly1𝑅 )
3 deg1pw.x 𝑋 = ( var1𝑅 )
4 deg1pw.n 𝑁 = ( mulGrp ‘ 𝑃 )
5 deg1pw.e = ( .g𝑁 )
6 2 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
7 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
8 2 3 4 5 7 ply1moncl ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐹 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
9 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
10 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
11 eqid ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) )
12 7 9 10 11 lmodvs1 ( ( 𝑃 ∈ LMod ∧ ( 𝐹 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) = ( 𝐹 𝑋 ) )
13 6 8 12 syl2an2r ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) = ( 𝐹 𝑋 ) )
14 13 fveq2d ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝐹 𝑋 ) ) )
15 simpl ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → 𝑅 ∈ Ring )
16 2 ply1sca ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) )
17 16 fveq2d ( 𝑅 ∈ Ring → ( 1r𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) )
18 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
19 eqid ( 1r𝑅 ) = ( 1r𝑅 )
20 18 19 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
21 17 20 eqeltrrd ( 𝑅 ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) )
22 21 adantr ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) )
23 simpr ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℕ0 )
24 1 18 2 3 10 4 5 deg1tmle ( ( 𝑅 ∈ Ring ∧ ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ∈ ( Base ‘ 𝑅 ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) ) ≤ 𝐹 )
25 15 22 23 24 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) ) ≤ 𝐹 )
26 14 25 eqbrtrrd ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐹 𝑋 ) ) ≤ 𝐹 )