| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1sclle.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1sclle.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1sclle.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | deg1sclle.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 | 2 4 3 | ply1sclid | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  𝐹  =  ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  ( 𝐴 ‘ 𝐹 )  =  ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 8 | 2 4 3 7 | ply1sclcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  ( 𝐴 ‘ 𝐹 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 9 | 1 2 7 4 | deg1le0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐴 ‘ 𝐹 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) )  ≤  0  ↔  ( 𝐴 ‘ 𝐹 )  =  ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) ) | 
						
							| 10 | 8 9 | syldan | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) )  ≤  0  ↔  ( 𝐴 ‘ 𝐹 )  =  ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) ) | 
						
							| 11 | 6 10 | mpbird | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐾 )  →  ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) )  ≤  0 ) |