Step |
Hyp |
Ref |
Expression |
1 |
|
deg1sclle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1sclle.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1sclle.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
deg1sclle.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
5 |
2 4 3
|
ply1sclid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → 𝐹 = ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
8 |
2 4 3 7
|
ply1sclcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
9 |
1 2 7 4
|
deg1le0 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ‘ 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ↔ ( 𝐴 ‘ 𝐹 ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) ) |
10 |
8 9
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ↔ ( 𝐴 ‘ 𝐹 ) = ( 𝐴 ‘ ( ( coe1 ‘ ( 𝐴 ‘ 𝐹 ) ) ‘ 0 ) ) ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ) → ( 𝐷 ‘ ( 𝐴 ‘ 𝐹 ) ) ≤ 0 ) |