| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1addle.y | ⊢ 𝑌  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1addle.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1addle.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | deg1suble.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 5 |  | deg1suble.m | ⊢  −   =  ( -g ‘ 𝑌 ) | 
						
							| 6 |  | deg1suble.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | deg1suble.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 8 |  | deg1sub.l | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐺 )  <  ( 𝐷 ‘ 𝐹 ) ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 10 |  | eqid | ⊢ ( invg ‘ 𝑌 )  =  ( invg ‘ 𝑌 ) | 
						
							| 11 | 4 9 10 5 | grpsubval | ⊢ ( ( 𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 𝐹  −  𝐺 )  =  ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) | 
						
							| 12 | 6 7 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  −  𝐺 )  =  ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹  −  𝐺 ) )  =  ( 𝐷 ‘ ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) ) | 
						
							| 14 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  Ring ) | 
						
							| 15 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 16 | 3 14 15 | 3syl | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 17 | 4 10 | grpinvcl | ⊢ ( ( 𝑌  ∈  Grp  ∧  𝐺  ∈  𝐵 )  →  ( ( invg ‘ 𝑌 ) ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 18 | 16 7 17 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝑌 ) ‘ 𝐺 )  ∈  𝐵 ) | 
						
							| 19 | 1 2 3 4 10 7 | deg1invg | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) )  =  ( 𝐷 ‘ 𝐺 ) ) | 
						
							| 20 | 19 8 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) )  <  ( 𝐷 ‘ 𝐹 ) ) | 
						
							| 21 | 1 2 3 4 9 6 18 20 | deg1add | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) )  =  ( 𝐷 ‘ 𝐹 ) ) | 
						
							| 22 | 13 21 | eqtrd | ⊢ ( 𝜑  →  ( 𝐷 ‘ ( 𝐹  −  𝐺 ) )  =  ( 𝐷 ‘ 𝐹 ) ) |