Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
deg1suble.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
deg1suble.m |
⊢ − = ( -g ‘ 𝑌 ) |
6 |
|
deg1suble.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
7 |
|
deg1suble.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
9 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ Ring ) |
10 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝑌 ) = ( invg ‘ 𝑌 ) |
13 |
4 12
|
grpinvcl |
⊢ ( ( 𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵 ) → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
14 |
11 7 13
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ∈ 𝐵 ) |
15 |
1 2 3 4 8 6 14
|
deg1addle |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) , ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) , ( 𝐷 ‘ 𝐹 ) ) ) |
16 |
4 8 12 5
|
grpsubval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
17 |
6 7 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) = ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = ( 𝐷 ‘ ( 𝐹 ( +g ‘ 𝑌 ) ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) ) |
19 |
1 2 3 4 12 7
|
deg1invg |
⊢ ( 𝜑 → ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |
20 |
19
|
eqcomd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) = ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) |
21 |
20
|
breq2d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) ) ) |
22 |
21 20
|
ifbieq1d |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) = if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) , ( 𝐷 ‘ ( ( invg ‘ 𝑌 ) ‘ 𝐺 ) ) , ( 𝐷 ‘ 𝐹 ) ) ) |
23 |
15 18 22
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |