Metamath Proof Explorer


Theorem deg1suble

Description: The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y 𝑌 = ( Poly1𝑅 )
deg1addle.d 𝐷 = ( deg1𝑅 )
deg1addle.r ( 𝜑𝑅 ∈ Ring )
deg1suble.b 𝐵 = ( Base ‘ 𝑌 )
deg1suble.m = ( -g𝑌 )
deg1suble.f ( 𝜑𝐹𝐵 )
deg1suble.g ( 𝜑𝐺𝐵 )
Assertion deg1suble ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y 𝑌 = ( Poly1𝑅 )
2 deg1addle.d 𝐷 = ( deg1𝑅 )
3 deg1addle.r ( 𝜑𝑅 ∈ Ring )
4 deg1suble.b 𝐵 = ( Base ‘ 𝑌 )
5 deg1suble.m = ( -g𝑌 )
6 deg1suble.f ( 𝜑𝐹𝐵 )
7 deg1suble.g ( 𝜑𝐺𝐵 )
8 eqid ( +g𝑌 ) = ( +g𝑌 )
9 1 ply1ring ( 𝑅 ∈ Ring → 𝑌 ∈ Ring )
10 ringgrp ( 𝑌 ∈ Ring → 𝑌 ∈ Grp )
11 3 9 10 3syl ( 𝜑𝑌 ∈ Grp )
12 eqid ( invg𝑌 ) = ( invg𝑌 )
13 4 12 grpinvcl ( ( 𝑌 ∈ Grp ∧ 𝐺𝐵 ) → ( ( invg𝑌 ) ‘ 𝐺 ) ∈ 𝐵 )
14 11 7 13 syl2anc ( 𝜑 → ( ( invg𝑌 ) ‘ 𝐺 ) ∈ 𝐵 )
15 1 2 3 4 8 6 14 deg1addle ( 𝜑 → ( 𝐷 ‘ ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) , ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) , ( 𝐷𝐹 ) ) )
16 4 8 12 5 grpsubval ( ( 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) = ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) )
17 6 7 16 syl2anc ( 𝜑 → ( 𝐹 𝐺 ) = ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) )
18 17 fveq2d ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = ( 𝐷 ‘ ( 𝐹 ( +g𝑌 ) ( ( invg𝑌 ) ‘ 𝐺 ) ) ) )
19 1 2 3 4 12 7 deg1invg ( 𝜑 → ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) = ( 𝐷𝐺 ) )
20 19 eqcomd ( 𝜑 → ( 𝐷𝐺 ) = ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) )
21 20 breq2d ( 𝜑 → ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) ↔ ( 𝐷𝐹 ) ≤ ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) ) )
22 21 20 ifbieq1d ( 𝜑 → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) = if ( ( 𝐷𝐹 ) ≤ ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) , ( 𝐷 ‘ ( ( invg𝑌 ) ‘ 𝐺 ) ) , ( 𝐷𝐹 ) ) )
23 15 18 22 3brtr4d ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )