Metamath Proof Explorer


Theorem deg1sublt

Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1sublt.d 𝐷 = ( deg1𝑅 )
deg1sublt.p 𝑃 = ( Poly1𝑅 )
deg1sublt.b 𝐵 = ( Base ‘ 𝑃 )
deg1sublt.m = ( -g𝑃 )
deg1sublt.l ( 𝜑𝐿 ∈ ℕ0 )
deg1sublt.r ( 𝜑𝑅 ∈ Ring )
deg1sublt.fb ( 𝜑𝐹𝐵 )
deg1sublt.fd ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐿 )
deg1sublt.gb ( 𝜑𝐺𝐵 )
deg1sublt.gd ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐿 )
deg1sublt.a 𝐴 = ( coe1𝐹 )
deg1sublt.c 𝐶 = ( coe1𝐺 )
deg1sublt.eq ( 𝜑 → ( ( coe1𝐹 ) ‘ 𝐿 ) = ( ( coe1𝐺 ) ‘ 𝐿 ) )
Assertion deg1sublt ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 )

Proof

Step Hyp Ref Expression
1 deg1sublt.d 𝐷 = ( deg1𝑅 )
2 deg1sublt.p 𝑃 = ( Poly1𝑅 )
3 deg1sublt.b 𝐵 = ( Base ‘ 𝑃 )
4 deg1sublt.m = ( -g𝑃 )
5 deg1sublt.l ( 𝜑𝐿 ∈ ℕ0 )
6 deg1sublt.r ( 𝜑𝑅 ∈ Ring )
7 deg1sublt.fb ( 𝜑𝐹𝐵 )
8 deg1sublt.fd ( 𝜑 → ( 𝐷𝐹 ) ≤ 𝐿 )
9 deg1sublt.gb ( 𝜑𝐺𝐵 )
10 deg1sublt.gd ( 𝜑 → ( 𝐷𝐺 ) ≤ 𝐿 )
11 deg1sublt.a 𝐴 = ( coe1𝐹 )
12 deg1sublt.c 𝐶 = ( coe1𝐺 )
13 deg1sublt.eq ( 𝜑 → ( ( coe1𝐹 ) ‘ 𝐿 ) = ( ( coe1𝐺 ) ‘ 𝐿 ) )
14 eqid ( 0g𝑃 ) = ( 0g𝑃 )
15 eqid ( 0g𝑅 ) = ( 0g𝑅 )
16 eqid ( coe1 ‘ ( 𝐹 𝐺 ) ) = ( coe1 ‘ ( 𝐹 𝐺 ) )
17 2 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
18 ringgrp ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
19 6 17 18 3syl ( 𝜑𝑃 ∈ Grp )
20 3 4 grpsubcl ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐺 ) ∈ 𝐵 )
21 19 7 9 20 syl3anc ( 𝜑 → ( 𝐹 𝐺 ) ∈ 𝐵 )
22 eqid ( -g𝑅 ) = ( -g𝑅 )
23 2 3 4 22 coe1subfv ( ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 𝐺 ) ) ‘ 𝐿 ) = ( ( ( coe1𝐹 ) ‘ 𝐿 ) ( -g𝑅 ) ( ( coe1𝐺 ) ‘ 𝐿 ) ) )
24 6 7 9 5 23 syl31anc ( 𝜑 → ( ( coe1 ‘ ( 𝐹 𝐺 ) ) ‘ 𝐿 ) = ( ( ( coe1𝐹 ) ‘ 𝐿 ) ( -g𝑅 ) ( ( coe1𝐺 ) ‘ 𝐿 ) ) )
25 13 oveq1d ( 𝜑 → ( ( ( coe1𝐹 ) ‘ 𝐿 ) ( -g𝑅 ) ( ( coe1𝐺 ) ‘ 𝐿 ) ) = ( ( ( coe1𝐺 ) ‘ 𝐿 ) ( -g𝑅 ) ( ( coe1𝐺 ) ‘ 𝐿 ) ) )
26 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
27 6 26 syl ( 𝜑𝑅 ∈ Grp )
28 eqid ( coe1𝐺 ) = ( coe1𝐺 )
29 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
30 28 3 2 29 coe1f ( 𝐺𝐵 → ( coe1𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
31 9 30 syl ( 𝜑 → ( coe1𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) )
32 31 5 ffvelrnd ( 𝜑 → ( ( coe1𝐺 ) ‘ 𝐿 ) ∈ ( Base ‘ 𝑅 ) )
33 29 15 22 grpsubid ( ( 𝑅 ∈ Grp ∧ ( ( coe1𝐺 ) ‘ 𝐿 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1𝐺 ) ‘ 𝐿 ) ( -g𝑅 ) ( ( coe1𝐺 ) ‘ 𝐿 ) ) = ( 0g𝑅 ) )
34 27 32 33 syl2anc ( 𝜑 → ( ( ( coe1𝐺 ) ‘ 𝐿 ) ( -g𝑅 ) ( ( coe1𝐺 ) ‘ 𝐿 ) ) = ( 0g𝑅 ) )
35 24 25 34 3eqtrd ( 𝜑 → ( ( coe1 ‘ ( 𝐹 𝐺 ) ) ‘ 𝐿 ) = ( 0g𝑅 ) )
36 1 2 14 3 15 16 6 21 5 35 deg1ldgn ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≠ 𝐿 )
37 36 neneqd ( 𝜑 → ¬ ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = 𝐿 )
38 1 2 3 deg1xrcl ( ( 𝐹 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ∈ ℝ* )
39 21 38 syl ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ∈ ℝ* )
40 1 2 3 deg1xrcl ( 𝐺𝐵 → ( 𝐷𝐺 ) ∈ ℝ* )
41 9 40 syl ( 𝜑 → ( 𝐷𝐺 ) ∈ ℝ* )
42 1 2 3 deg1xrcl ( 𝐹𝐵 → ( 𝐷𝐹 ) ∈ ℝ* )
43 7 42 syl ( 𝜑 → ( 𝐷𝐹 ) ∈ ℝ* )
44 41 43 ifcld ( 𝜑 → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ∈ ℝ* )
45 5 nn0red ( 𝜑𝐿 ∈ ℝ )
46 45 rexrd ( 𝜑𝐿 ∈ ℝ* )
47 2 1 6 3 4 7 9 deg1suble ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≤ if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) )
48 xrmaxle ( ( ( 𝐷𝐹 ) ∈ ℝ* ∧ ( 𝐷𝐺 ) ∈ ℝ*𝐿 ∈ ℝ* ) → ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷𝐹 ) ≤ 𝐿 ∧ ( 𝐷𝐺 ) ≤ 𝐿 ) ) )
49 43 41 46 48 syl3anc ( 𝜑 → ( if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷𝐹 ) ≤ 𝐿 ∧ ( 𝐷𝐺 ) ≤ 𝐿 ) ) )
50 8 10 49 mpbir2and ( 𝜑 → if ( ( 𝐷𝐹 ) ≤ ( 𝐷𝐺 ) , ( 𝐷𝐺 ) , ( 𝐷𝐹 ) ) ≤ 𝐿 )
51 39 44 46 47 50 xrletrd ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≤ 𝐿 )
52 xrleloe ( ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ∈ ℝ*𝐿 ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = 𝐿 ) ) )
53 39 46 52 syl2anc ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = 𝐿 ) ) )
54 51 53 mpbid ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = 𝐿 ) )
55 orel2 ( ¬ ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = 𝐿 → ( ( ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 𝐺 ) ) = 𝐿 ) → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 ) )
56 37 54 55 sylc ( 𝜑 → ( 𝐷 ‘ ( 𝐹 𝐺 ) ) < 𝐿 )