Step |
Hyp |
Ref |
Expression |
1 |
|
deg1sublt.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1sublt.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1sublt.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
deg1sublt.m |
⊢ − = ( -g ‘ 𝑃 ) |
5 |
|
deg1sublt.l |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
6 |
|
deg1sublt.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
deg1sublt.fb |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
deg1sublt.fd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ) |
9 |
|
deg1sublt.gb |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
10 |
|
deg1sublt.gd |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) |
11 |
|
deg1sublt.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
12 |
|
deg1sublt.c |
⊢ 𝐶 = ( coe1 ‘ 𝐺 ) |
13 |
|
deg1sublt.eq |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐹 ) ‘ 𝐿 ) = ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐹 − 𝐺 ) ) = ( coe1 ‘ ( 𝐹 − 𝐺 ) ) |
17 |
2
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
18 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
19 |
6 17 18
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
20 |
3 4
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
21 |
19 7 9 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 − 𝐺 ) ∈ 𝐵 ) |
22 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
23 |
2 3 4 22
|
coe1subfv |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐿 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝐿 ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝐿 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) ) |
24 |
6 7 9 5 23
|
syl31anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝐿 ) = ( ( ( coe1 ‘ 𝐹 ) ‘ 𝐿 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) ) |
25 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐹 ) ‘ 𝐿 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) = ( ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) ) |
26 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
27 |
6 26
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
28 |
|
eqid |
⊢ ( coe1 ‘ 𝐺 ) = ( coe1 ‘ 𝐺 ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
30 |
28 3 2 29
|
coe1f |
⊢ ( 𝐺 ∈ 𝐵 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
31 |
9 30
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 𝐺 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) |
32 |
31 5
|
ffvelrnd |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
29 15 22
|
grpsubid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) = ( 0g ‘ 𝑅 ) ) |
34 |
27 32 33
|
syl2anc |
⊢ ( 𝜑 → ( ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ( -g ‘ 𝑅 ) ( ( coe1 ‘ 𝐺 ) ‘ 𝐿 ) ) = ( 0g ‘ 𝑅 ) ) |
35 |
24 25 34
|
3eqtrd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐹 − 𝐺 ) ) ‘ 𝐿 ) = ( 0g ‘ 𝑅 ) ) |
36 |
1 2 14 3 15 16 6 21 5 35
|
deg1ldgn |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ≠ 𝐿 ) |
37 |
36
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = 𝐿 ) |
38 |
1 2 3
|
deg1xrcl |
⊢ ( ( 𝐹 − 𝐺 ) ∈ 𝐵 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ∈ ℝ* ) |
39 |
21 38
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ∈ ℝ* ) |
40 |
1 2 3
|
deg1xrcl |
⊢ ( 𝐺 ∈ 𝐵 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
41 |
9 40
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ) |
42 |
1 2 3
|
deg1xrcl |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
43 |
7 42
|
syl |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ) |
44 |
41 43
|
ifcld |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ∈ ℝ* ) |
45 |
5
|
nn0red |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
46 |
45
|
rexrd |
⊢ ( 𝜑 → 𝐿 ∈ ℝ* ) |
47 |
2 1 6 3 4 7 9
|
deg1suble |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ≤ if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ) |
48 |
|
xrmaxle |
⊢ ( ( ( 𝐷 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝐷 ‘ 𝐺 ) ∈ ℝ* ∧ 𝐿 ∈ ℝ* ) → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ∧ ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) ) ) |
49 |
43 41 46 48
|
syl3anc |
⊢ ( 𝜑 → ( if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ 𝐹 ) ≤ 𝐿 ∧ ( 𝐷 ‘ 𝐺 ) ≤ 𝐿 ) ) ) |
50 |
8 10 49
|
mpbir2and |
⊢ ( 𝜑 → if ( ( 𝐷 ‘ 𝐹 ) ≤ ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐺 ) , ( 𝐷 ‘ 𝐹 ) ) ≤ 𝐿 ) |
51 |
39 44 46 47 50
|
xrletrd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ≤ 𝐿 ) |
52 |
|
xrleloe |
⊢ ( ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ∈ ℝ* ∧ 𝐿 ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = 𝐿 ) ) ) |
53 |
39 46 52
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) ≤ 𝐿 ↔ ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = 𝐿 ) ) ) |
54 |
51 53
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = 𝐿 ) ) |
55 |
|
orel2 |
⊢ ( ¬ ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = 𝐿 → ( ( ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) < 𝐿 ∨ ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) = 𝐿 ) → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) < 𝐿 ) ) |
56 |
37 54 55
|
sylc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 − 𝐺 ) ) < 𝐿 ) |