Step |
Hyp |
Ref |
Expression |
1 |
|
deg1tm.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1tm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
deg1tm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
deg1tm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
deg1tm.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
6 |
|
deg1tm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
7 |
|
deg1tm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
8 |
|
deg1tm.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
10 |
2 3 4 5 6 7 9
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
11 |
10
|
3adant2r |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
12 |
1 3 9
|
deg1xrcl |
⊢ ( ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ∈ ℝ* ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ∈ ℝ* ) |
14 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℕ0 ) |
15 |
14
|
nn0red |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℝ ) |
16 |
15
|
rexrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℝ* ) |
17 |
1 2 3 4 5 6 7
|
deg1tmle |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ) |
18 |
17
|
3adant2r |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ) |
19 |
8 2 3 4 5 6 7
|
coe1tmfv1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝐹 ) = 𝐶 ) |
20 |
19
|
3adant2r |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝐹 ) = 𝐶 ) |
21 |
|
simp2r |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → 𝐶 ≠ 0 ) |
22 |
20 21
|
eqnetrd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝐹 ) ≠ 0 ) |
23 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) |
24 |
1 3 9 8 23
|
deg1ge |
⊢ ( ( ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ∈ ℕ0 ∧ ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝐹 ) ≠ 0 ) → 𝐹 ≤ ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ) |
25 |
11 14 22 24
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ≤ ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ) |
26 |
13 16 18 25
|
xrletrid |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) = 𝐹 ) |