Step |
Hyp |
Ref |
Expression |
1 |
|
deg1tm.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1tm.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
3 |
|
deg1tm.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
deg1tm.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
5 |
|
deg1tm.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
6 |
|
deg1tm.n |
⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) |
7 |
|
deg1tm.e |
⊢ ↑ = ( .g ‘ 𝑁 ) |
8 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝑅 ∈ Ring ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝐶 ∈ 𝐾 ) |
11 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝐹 ∈ ℕ0 ) |
12 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝑥 ∈ ℕ0 ) |
13 |
11
|
nn0red |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝐹 ∈ ℝ ) |
14 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝐹 < 𝑥 ) |
15 |
13 14
|
ltned |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → 𝐹 ≠ 𝑥 ) |
16 |
8 2 3 4 5 6 7 9 10 11 12 15
|
coe1tmfv2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐹 < 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
17 |
16
|
expr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
20 |
2 3 4 5 6 7 19
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ) |
21 |
|
nn0re |
⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ ) |
22 |
21
|
rexrd |
⊢ ( 𝐹 ∈ ℕ0 → 𝐹 ∈ ℝ* ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℝ* ) |
24 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) |
25 |
1 3 19 8 24
|
deg1leb |
⊢ ( ( ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℕ0 ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
26 |
20 23 25
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ( ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℕ0 ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g ‘ 𝑅 ) ) ) ) |
27 |
18 26
|
mpbird |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 ↑ 𝑋 ) ) ) ≤ 𝐹 ) |