Metamath Proof Explorer


Theorem deg1tmle

Description: Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses deg1tm.d 𝐷 = ( deg1𝑅 )
deg1tm.k 𝐾 = ( Base ‘ 𝑅 )
deg1tm.p 𝑃 = ( Poly1𝑅 )
deg1tm.x 𝑋 = ( var1𝑅 )
deg1tm.m · = ( ·𝑠𝑃 )
deg1tm.n 𝑁 = ( mulGrp ‘ 𝑃 )
deg1tm.e = ( .g𝑁 )
Assertion deg1tmle ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ≤ 𝐹 )

Proof

Step Hyp Ref Expression
1 deg1tm.d 𝐷 = ( deg1𝑅 )
2 deg1tm.k 𝐾 = ( Base ‘ 𝑅 )
3 deg1tm.p 𝑃 = ( Poly1𝑅 )
4 deg1tm.x 𝑋 = ( var1𝑅 )
5 deg1tm.m · = ( ·𝑠𝑃 )
6 deg1tm.n 𝑁 = ( mulGrp ‘ 𝑃 )
7 deg1tm.e = ( .g𝑁 )
8 eqid ( 0g𝑅 ) = ( 0g𝑅 )
9 simpl1 ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝑅 ∈ Ring )
10 simpl2 ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝐶𝐾 )
11 simpl3 ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝐹 ∈ ℕ0 )
12 simprl ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝑥 ∈ ℕ0 )
13 11 nn0red ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝐹 ∈ ℝ )
14 simprr ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝐹 < 𝑥 )
15 13 14 ltned ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → 𝐹𝑥 )
16 8 2 3 4 5 6 7 9 10 11 12 15 coe1tmfv2 ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ ( 𝑥 ∈ ℕ0𝐹 < 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g𝑅 ) )
17 16 expr ( ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g𝑅 ) ) )
18 17 ralrimiva ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g𝑅 ) ) )
19 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
20 2 3 4 5 6 7 19 ply1tmcl ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) → ( 𝐶 · ( 𝐹 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) )
21 nn0re ( 𝐹 ∈ ℕ0𝐹 ∈ ℝ )
22 21 rexrd ( 𝐹 ∈ ℕ0𝐹 ∈ ℝ* )
23 22 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℝ* )
24 eqid ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) )
25 1 3 19 8 24 deg1leb ( ( ( 𝐶 · ( 𝐹 𝑋 ) ) ∈ ( Base ‘ 𝑃 ) ∧ 𝐹 ∈ ℝ* ) → ( ( 𝐷 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℕ0 ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g𝑅 ) ) ) )
26 20 23 25 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) → ( ( 𝐷 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℕ0 ( 𝐹 < 𝑥 → ( ( coe1 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ‘ 𝑥 ) = ( 0g𝑅 ) ) ) )
27 18 26 mpbird ( ( 𝑅 ∈ Ring ∧ 𝐶𝐾𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐶 · ( 𝐹 𝑋 ) ) ) ≤ 𝐹 )