Step |
Hyp |
Ref |
Expression |
1 |
|
deg1leb.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1leb.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1leb.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
deg1leb.y |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
deg1leb.a |
⊢ 𝐴 = ( coe1 ‘ 𝐹 ) |
6 |
1
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
7 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
8 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
9 |
2 8 3
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
10 |
|
psr1baslem |
⊢ ( ℕ0 ↑m 1o ) = { 𝑦 ∈ ( ℕ0 ↑m 1o ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } |
11 |
|
tdeglem2 |
⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( ℂfld Σg 𝑥 ) ) |
12 |
6 7 9 4 10 11
|
mdegval |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) , ℝ* , < ) ) |
13 |
4
|
fvexi |
⊢ 0 ∈ V |
14 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
15 |
13 14
|
mpan2 |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
16 |
15
|
imaeq2d |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
17 |
|
imaco |
⊢ ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
18 |
16 17
|
eqtr4di |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) ) |
19 |
|
df1o2 |
⊢ 1o = { ∅ } |
20 |
|
nn0ex |
⊢ ℕ0 ∈ V |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
|
eqid |
⊢ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) |
23 |
19 20 21 22
|
mapsncnv |
⊢ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 1o × { 𝑦 } ) ) |
24 |
5 3 2 23
|
coe1fval2 |
⊢ ( 𝐹 ∈ 𝐵 → 𝐴 = ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
25 |
24
|
cnveqd |
⊢ ( 𝐹 ∈ 𝐵 → ◡ 𝐴 = ◡ ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
26 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ◡ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) |
27 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) |
28 |
26 27
|
eqtri |
⊢ ◡ ( 𝐹 ∘ ◡ ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) |
29 |
25 28
|
eqtr2di |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) = ◡ 𝐴 ) |
30 |
29
|
imaeq1d |
⊢ ( 𝐹 ∈ 𝐵 → ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ◡ 𝐹 ) “ ( V ∖ { 0 } ) ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
31 |
18 30
|
eqtrd |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
32 |
5
|
fvexi |
⊢ 𝐴 ∈ V |
33 |
|
suppimacnv |
⊢ ( ( 𝐴 ∈ V ∧ 0 ∈ V ) → ( 𝐴 supp 0 ) = ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) ) |
34 |
33
|
eqcomd |
⊢ ( ( 𝐴 ∈ V ∧ 0 ∈ V ) → ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) = ( 𝐴 supp 0 ) ) |
35 |
32 13 34
|
mp2an |
⊢ ( ◡ 𝐴 “ ( V ∖ { 0 } ) ) = ( 𝐴 supp 0 ) |
36 |
31 35
|
eqtrdi |
⊢ ( 𝐹 ∈ 𝐵 → ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) = ( 𝐴 supp 0 ) ) |
37 |
36
|
supeq1d |
⊢ ( 𝐹 ∈ 𝐵 → sup ( ( ( 𝑥 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) “ ( 𝐹 supp 0 ) ) , ℝ* , < ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) ) |
38 |
12 37
|
eqtrd |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐷 ‘ 𝐹 ) = sup ( ( 𝐴 supp 0 ) , ℝ* , < ) ) |