Description: The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1addle.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘ 𝑅 ) | ||
deg1addle.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
deg1vsca.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
deg1vsca.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | ||
deg1vsca.p | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | ||
deg1vsca.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐸 ) | ||
deg1vsca.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
Assertion | deg1vsca | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.y | ⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) | |
2 | deg1addle.d | ⊢ 𝐷 = ( deg1 ‘ 𝑅 ) | |
3 | deg1addle.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
4 | deg1vsca.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
5 | deg1vsca.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
6 | deg1vsca.p | ⊢ · = ( ·𝑠 ‘ 𝑌 ) | |
7 | deg1vsca.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐸 ) | |
8 | deg1vsca.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
9 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
10 | 2 | deg1fval | ⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
11 | 1on | ⊢ 1o ∈ On | |
12 | 11 | a1i | ⊢ ( 𝜑 → 1o ∈ On ) |
13 | 1 4 | ply1bas | ⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
14 | 1 9 6 | ply1vsca | ⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
15 | 9 10 12 3 13 5 14 7 8 | mdegvsca | ⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |