Step |
Hyp |
Ref |
Expression |
1 |
|
deg1addle.y |
⊢ 𝑌 = ( Poly1 ‘ 𝑅 ) |
2 |
|
deg1addle.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
3 |
|
deg1addle.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
deg1vsca.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
5 |
|
deg1vsca.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
6 |
|
deg1vsca.p |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
7 |
|
deg1vsca.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐸 ) |
8 |
|
deg1vsca.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
10 |
2
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
11 |
|
1on |
⊢ 1o ∈ On |
12 |
11
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
13 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
14 |
1 13 4
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
15 |
1 9 6
|
ply1vsca |
⊢ · = ( ·𝑠 ‘ ( 1o mPoly 𝑅 ) ) |
16 |
9 10 12 3 14 5 15 7 8
|
mdegvsca |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝐹 · 𝐺 ) ) = ( 𝐷 ‘ 𝐺 ) ) |