Metamath Proof Explorer
Description: Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
deg1xrf.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
|
|
deg1xrf.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
|
|
deg1xrf.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
|
Assertion |
deg1xrf |
⊢ 𝐷 : 𝐵 ⟶ ℝ* |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
deg1xrf.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
2 |
|
deg1xrf.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
deg1xrf.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
1
|
deg1fval |
⊢ 𝐷 = ( 1o mDeg 𝑅 ) |
5 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
6 |
|
eqid |
⊢ ( PwSer1 ‘ 𝑅 ) = ( PwSer1 ‘ 𝑅 ) |
7 |
2 6 3
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
8 |
4 5 7
|
mdegxrf |
⊢ 𝐷 : 𝐵 ⟶ ℝ* |