Metamath Proof Explorer
		
		
		
		Description:  Functionality of univariate polynomial degree, weak range.  (Contributed by Stefan O'Rear, 23-Mar-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | deg1xrf.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
					
						|  |  | deg1xrf.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
					
						|  |  | deg1xrf.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
				
					|  | Assertion | deg1xrf | ⊢  𝐷 : 𝐵 ⟶ ℝ* | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | deg1xrf.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑅 ) | 
						
							| 2 |  | deg1xrf.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | deg1xrf.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 | 1 | deg1fval | ⊢ 𝐷  =  ( 1o  mDeg  𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 6 | 2 3 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 7 | 4 5 6 | mdegxrf | ⊢ 𝐷 : 𝐵 ⟶ ℝ* |