| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2z | ⊢ ( 𝑌  ∈  ℤ  →  ( 𝑌  +  1 )  ∈  ℤ ) | 
						
							| 2 |  | degltlem1 | ⊢ ( ( 𝑋  ∈  ( ℕ0  ∪  { -∞ } )  ∧  ( 𝑌  +  1 )  ∈  ℤ )  →  ( 𝑋  <  ( 𝑌  +  1 )  ↔  𝑋  ≤  ( ( 𝑌  +  1 )  −  1 ) ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑋  ∈  ( ℕ0  ∪  { -∞ } )  ∧  𝑌  ∈  ℤ )  →  ( 𝑋  <  ( 𝑌  +  1 )  ↔  𝑋  ≤  ( ( 𝑌  +  1 )  −  1 ) ) ) | 
						
							| 4 |  | zcn | ⊢ ( 𝑌  ∈  ℤ  →  𝑌  ∈  ℂ ) | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 |  | pncan | ⊢ ( ( 𝑌  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑌  +  1 )  −  1 )  =  𝑌 ) | 
						
							| 7 | 4 5 6 | sylancl | ⊢ ( 𝑌  ∈  ℤ  →  ( ( 𝑌  +  1 )  −  1 )  =  𝑌 ) | 
						
							| 8 | 7 | breq2d | ⊢ ( 𝑌  ∈  ℤ  →  ( 𝑋  ≤  ( ( 𝑌  +  1 )  −  1 )  ↔  𝑋  ≤  𝑌 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑋  ∈  ( ℕ0  ∪  { -∞ } )  ∧  𝑌  ∈  ℤ )  →  ( 𝑋  ≤  ( ( 𝑌  +  1 )  −  1 )  ↔  𝑋  ≤  𝑌 ) ) | 
						
							| 10 | 3 9 | bitrd | ⊢ ( ( 𝑋  ∈  ( ℕ0  ∪  { -∞ } )  ∧  𝑌  ∈  ℤ )  →  ( 𝑋  <  ( 𝑌  +  1 )  ↔  𝑋  ≤  𝑌 ) ) |