| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 0 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝑥 = 0 → ( cos ‘ ( 𝑥 · 𝐴 ) ) = ( cos ‘ ( 0 · 𝐴 ) ) ) |
| 4 |
2
|
fveq2d |
⊢ ( 𝑥 = 0 → ( sin ‘ ( 𝑥 · 𝐴 ) ) = ( sin ‘ ( 0 · 𝐴 ) ) ) |
| 5 |
4
|
oveq2d |
⊢ ( 𝑥 = 0 → ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) = ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) |
| 6 |
3 5
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) = ( ( cos ‘ ( 0 · 𝐴 ) ) + ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) ) |
| 7 |
1 6
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ↔ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 0 ) = ( ( cos ‘ ( 0 · 𝐴 ) ) + ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ) ↔ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 0 ) = ( ( cos ‘ ( 0 · 𝐴 ) ) + ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 · 𝐴 ) = ( 𝑘 · 𝐴 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑥 = 𝑘 → ( cos ‘ ( 𝑥 · 𝐴 ) ) = ( cos ‘ ( 𝑘 · 𝐴 ) ) ) |
| 12 |
10
|
fveq2d |
⊢ ( 𝑥 = 𝑘 → ( sin ‘ ( 𝑥 · 𝐴 ) ) = ( sin ‘ ( 𝑘 · 𝐴 ) ) ) |
| 13 |
12
|
oveq2d |
⊢ ( 𝑥 = 𝑘 → ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) = ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) |
| 14 |
11 13
|
oveq12d |
⊢ ( 𝑥 = 𝑘 → ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 15 |
9 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑘 → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ↔ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ) ↔ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑥 · 𝐴 ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( cos ‘ ( 𝑥 · 𝐴 ) ) = ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) |
| 20 |
18
|
fveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( sin ‘ ( 𝑥 · 𝐴 ) ) = ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) = ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
| 22 |
19 21
|
oveq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) |
| 23 |
17 22
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ↔ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ) ↔ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) ) |
| 26 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( cos ‘ ( 𝑥 · 𝐴 ) ) = ( cos ‘ ( 𝑁 · 𝐴 ) ) ) |
| 28 |
26
|
fveq2d |
⊢ ( 𝑥 = 𝑁 → ( sin ‘ ( 𝑥 · 𝐴 ) ) = ( sin ‘ ( 𝑁 · 𝐴 ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) = ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) |
| 30 |
27 29
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |
| 31 |
25 30
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ↔ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑥 ) = ( ( cos ‘ ( 𝑥 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑥 · 𝐴 ) ) ) ) ) ↔ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) ) ) |
| 33 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 34 |
|
ax-icn |
⊢ i ∈ ℂ |
| 35 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 36 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 37 |
34 35 36
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 38 |
|
addcl |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 39 |
33 37 38
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 40 |
|
exp0 |
⊢ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 0 ) = 1 ) |
| 41 |
39 40
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 0 ) = 1 ) |
| 42 |
|
mul02 |
⊢ ( 𝐴 ∈ ℂ → ( 0 · 𝐴 ) = 0 ) |
| 43 |
42
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 0 · 𝐴 ) ) = ( cos ‘ 0 ) ) |
| 44 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
| 45 |
43 44
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( 0 · 𝐴 ) ) = 1 ) |
| 46 |
42
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 0 · 𝐴 ) ) = ( sin ‘ 0 ) ) |
| 47 |
|
sin0 |
⊢ ( sin ‘ 0 ) = 0 |
| 48 |
46 47
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( 0 · 𝐴 ) ) = 0 ) |
| 49 |
48
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) = ( i · 0 ) ) |
| 50 |
34
|
mul01i |
⊢ ( i · 0 ) = 0 |
| 51 |
49 50
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) = 0 ) |
| 52 |
45 51
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( 0 · 𝐴 ) ) + ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) = ( 1 + 0 ) ) |
| 53 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 54 |
53
|
addridi |
⊢ ( 1 + 0 ) = 1 |
| 55 |
52 54
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( 0 · 𝐴 ) ) + ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) = 1 ) |
| 56 |
41 55
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 0 ) = ( ( cos ‘ ( 0 · 𝐴 ) ) + ( i · ( sin ‘ ( 0 · 𝐴 ) ) ) ) ) |
| 57 |
|
expp1 |
⊢ ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 58 |
39 57
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 59 |
58
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 60 |
59
|
adantr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) ∧ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 61 |
|
oveq1 |
⊢ ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 62 |
61
|
adantl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) ∧ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 63 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 64 |
|
mulcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑘 · 𝐴 ) ∈ ℂ ) |
| 65 |
63 64
|
sylan |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( 𝑘 · 𝐴 ) ∈ ℂ ) |
| 66 |
|
sinadd |
⊢ ( ( ( 𝑘 · 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) = ( ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 67 |
65 66
|
sylancom |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) = ( ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 68 |
33
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 69 |
|
sincl |
⊢ ( ( 𝑘 · 𝐴 ) ∈ ℂ → ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) |
| 70 |
65 69
|
syl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) |
| 71 |
|
mulcom |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) = ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) ) |
| 72 |
68 70 71
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) = ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) ) |
| 73 |
72
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) + ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 74 |
|
mulcl |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 75 |
68 70 74
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 76 |
|
coscl |
⊢ ( ( 𝑘 · 𝐴 ) ∈ ℂ → ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) |
| 77 |
65 76
|
syl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) |
| 78 |
35
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 79 |
|
mulcl |
⊢ ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 80 |
77 78 79
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 81 |
|
addcom |
⊢ ( ( ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ∧ ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) + ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 82 |
75 80 81
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) + ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 83 |
67 73 82
|
3eqtr2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( i · ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) = ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 85 |
84
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) ) = ( ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 86 |
|
adddir |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
| 87 |
|
mullid |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
| 88 |
87
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 89 |
88
|
3ad2ant3 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 90 |
86 89
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 91 |
63 90
|
syl3an1 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 92 |
53 91
|
mp3an2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 93 |
92
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) = ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) |
| 94 |
92
|
fveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) = ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) |
| 95 |
94
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) = ( i · ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) ) |
| 96 |
93 95
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) = ( ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) ) ) |
| 97 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) → ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 98 |
34 97
|
mpan |
⊢ ( ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ → ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 99 |
65 69 98
|
3syl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 100 |
33 37
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) ) |
| 101 |
100
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) ) |
| 102 |
|
muladd |
⊢ ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ∧ ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 103 |
77 99 101 102
|
syl21anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 104 |
78 34
|
jctil |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) ) |
| 105 |
70 34
|
jctil |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( i ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) ) |
| 106 |
|
mul4 |
⊢ ( ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) ∧ ( i ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) ) → ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( ( i · i ) · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 107 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 108 |
107
|
oveq1i |
⊢ ( ( i · i ) · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) |
| 109 |
106 108
|
eqtrdi |
⊢ ( ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) ∧ ( i ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) ) → ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 110 |
104 105 109
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 111 |
110
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 112 |
111
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 113 |
|
mul12 |
⊢ ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ∧ i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 114 |
34 113
|
mp3an2 |
⊢ ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 115 |
77 78 114
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) = ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 116 |
|
mul12 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ i ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 117 |
34 116
|
mp3an2 |
⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 118 |
68 70 117
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 119 |
115 118
|
oveq12d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) + ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 120 |
|
adddi |
⊢ ( ( i ∈ ℂ ∧ ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) → ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) + ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 121 |
34 120
|
mp3an1 |
⊢ ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) → ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) + ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 122 |
80 75 121
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( ( i · ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) + ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 123 |
119 122
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) |
| 124 |
123
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) + ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 125 |
103 112 124
|
3eqtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 126 |
|
mulcl |
⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 127 |
78 70 126
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) |
| 128 |
|
mulm1 |
⊢ ( ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ → ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) |
| 129 |
127 128
|
syl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) |
| 130 |
129
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 131 |
130
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + ( - 1 · ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 132 |
|
mulcl |
⊢ ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ∧ ( cos ‘ 𝐴 ) ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
| 133 |
77 68 132
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) ∈ ℂ ) |
| 134 |
|
negsub |
⊢ ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) ∈ ℂ ∧ ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 135 |
133 127 134
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 136 |
135
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) + - ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 137 |
125 131 136
|
3eqtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 138 |
|
cosadd |
⊢ ( ( ( 𝑘 · 𝐴 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 139 |
65 138
|
sylancom |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 140 |
|
mulcom |
⊢ ( ( ( sin ‘ ( 𝑘 · 𝐴 ) ) ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) |
| 141 |
70 78 140
|
syl2anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) |
| 142 |
141
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 143 |
139 142
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) = ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) |
| 144 |
143
|
oveq1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 145 |
137 144
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( cos ‘ ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) + ( i · ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) · ( sin ‘ 𝐴 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) ) ) |
| 146 |
85 96 145
|
3eqtr4rd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) |
| 147 |
146
|
adantr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) ∧ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) → ( ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) · ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) |
| 148 |
60 62 147
|
3eqtrd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ ℂ ) ∧ ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) |
| 149 |
148
|
exp31 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) ) ) |
| 150 |
149
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑘 ) = ( ( cos ‘ ( 𝑘 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑘 · 𝐴 ) ) ) ) ) → ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ ( 𝑘 + 1 ) ) = ( ( cos ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) + ( i · ( sin ‘ ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) ) ) ) |
| 151 |
8 16 24 32 56 150
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) ) |
| 152 |
151
|
impcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ↑ 𝑁 ) = ( ( cos ‘ ( 𝑁 · 𝐴 ) ) + ( i · ( sin ‘ ( 𝑁 · 𝐴 ) ) ) ) ) |