Metamath Proof Explorer


Theorem densq

Description: Square commutes with canonical denominator. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion densq ( 𝐴 ∈ ℚ → ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 numdensq ( 𝐴 ∈ ℚ → ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) )
2 1 simprd ( 𝐴 ∈ ℚ → ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) )