Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
1
|
derangenlem |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐷 ‘ 𝐴 ) ≤ ( 𝐷 ‘ 𝐵 ) ) |
3 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐵 ≈ 𝐴 ) |
5 |
|
enfi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
7 |
1
|
derangenlem |
⊢ ( ( 𝐵 ≈ 𝐴 ∧ 𝐴 ∈ Fin ) → ( 𝐷 ‘ 𝐵 ) ≤ ( 𝐷 ‘ 𝐴 ) ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐷 ‘ 𝐵 ) ≤ ( 𝐷 ‘ 𝐴 ) ) |
9 |
1
|
derangf |
⊢ 𝐷 : Fin ⟶ ℕ0 |
10 |
9
|
ffvelrni |
⊢ ( 𝐴 ∈ Fin → ( 𝐷 ‘ 𝐴 ) ∈ ℕ0 ) |
11 |
6 10
|
syl |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐷 ‘ 𝐴 ) ∈ ℕ0 ) |
12 |
9
|
ffvelrni |
⊢ ( 𝐵 ∈ Fin → ( 𝐷 ‘ 𝐵 ) ∈ ℕ0 ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐷 ‘ 𝐵 ) ∈ ℕ0 ) |
14 |
|
nn0re |
⊢ ( ( 𝐷 ‘ 𝐴 ) ∈ ℕ0 → ( 𝐷 ‘ 𝐴 ) ∈ ℝ ) |
15 |
|
nn0re |
⊢ ( ( 𝐷 ‘ 𝐵 ) ∈ ℕ0 → ( 𝐷 ‘ 𝐵 ) ∈ ℝ ) |
16 |
|
letri3 |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐷 ‘ 𝐵 ) ∈ ℝ ) → ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝐵 ) ↔ ( ( 𝐷 ‘ 𝐴 ) ≤ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝐵 ) ≤ ( 𝐷 ‘ 𝐴 ) ) ) ) |
17 |
14 15 16
|
syl2an |
⊢ ( ( ( 𝐷 ‘ 𝐴 ) ∈ ℕ0 ∧ ( 𝐷 ‘ 𝐵 ) ∈ ℕ0 ) → ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝐵 ) ↔ ( ( 𝐷 ‘ 𝐴 ) ≤ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝐵 ) ≤ ( 𝐷 ‘ 𝐴 ) ) ) ) |
18 |
11 13 17
|
syl2anc |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝐵 ) ↔ ( ( 𝐷 ‘ 𝐴 ) ≤ ( 𝐷 ‘ 𝐵 ) ∧ ( 𝐷 ‘ 𝐵 ) ≤ ( 𝐷 ‘ 𝐴 ) ) ) ) |
19 |
2 8 18
|
mpbir2and |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ( 𝐷 ‘ 𝐴 ) = ( 𝐷 ‘ 𝐵 ) ) |