Step |
Hyp |
Ref |
Expression |
1 |
|
derangfmla.d |
⊢ 𝐷 = ( 𝑥 ∈ Fin ↦ ( ♯ ‘ { 𝑓 ∣ ( 𝑓 : 𝑥 –1-1-onto→ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) ≠ 𝑦 ) } ) ) |
2 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 ... 𝑛 ) = ( 1 ... 𝑚 ) ) |
3 |
2
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐷 ‘ ( 1 ... 𝑛 ) ) = ( 𝐷 ‘ ( 1 ... 𝑚 ) ) ) |
4 |
3
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑚 ) ) ) |
5 |
1 4
|
derangen2 |
⊢ ( 𝐴 ∈ Fin → ( 𝐷 ‘ 𝐴 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( 𝐷 ‘ 𝐴 ) = ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
7 |
|
hashnncl |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 𝐴 ≠ ∅ ) ) |
8 |
7
|
biimpar |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
9 |
1 4
|
subfacval3 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ⌊ ‘ ( ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) / e ) + ( 1 / 2 ) ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐷 ‘ ( 1 ... 𝑛 ) ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ⌊ ‘ ( ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) / e ) + ( 1 / 2 ) ) ) ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( 𝐷 ‘ 𝐴 ) = ( ⌊ ‘ ( ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) / e ) + ( 1 / 2 ) ) ) ) |